DUAN Baichuan,LI Tiegang. Three-dimensional reconstruction of ontogeny of planktonic foraminifera in tropical West Pacific sediments and its ecological and paleoceanographic implications[J]. Marine Geology & Quaternary Geology,2023,43(4):17-29. DOI: 10.16562/j.cnki.0256-1492.2023071002
Citation: DUAN Baichuan,LI Tiegang. Three-dimensional reconstruction of ontogeny of planktonic foraminifera in tropical West Pacific sediments and its ecological and paleoceanographic implications[J]. Marine Geology & Quaternary Geology,2023,43(4):17-29. DOI: 10.16562/j.cnki.0256-1492.2023071002

Three-dimensional reconstruction of ontogeny of planktonic foraminifera in tropical West Pacific sediments and its ecological and paleoceanographic implications

More Information
  • Received Date: July 09, 2023
  • Revised Date: August 17, 2023
  • Accepted Date: August 17, 2023
  • Available Online: September 12, 2023
  • The biological function and mechanism of the calcareous skeletons of planktonic foraminifera are not fully understood. Previous studies have suggested that the shell plays a role in regulating the force balance of planktonic foraminifera by providing negative buoyancy. However, few studies have reconstructed and quantitatively analyzed the individual development process of planktonic foraminifera to reveal the function of the shell throughout their life cycle. We used synchrotron X-ray tomography to reconstruct the individual development of planktonic foraminiferal chambers from six different genera in sediment cores from the tropical western Pacific. By calculating the total mass of the shell and cytoplasm before and after the formation of each chamber, we were able to determine the average density variation pattern during the entire individual development process. We found significant differences in the patterns of average density among different ecological niche genera, suggesting that buoyancy regulation may be related to vertical migration during the life cycle, especially for non-spinose planktonic foraminifera genera. The density patterns also reveal the range of buoyancy regulation throughout the entire individual development process, which may be one of the factors on the vertical migration of non-spinose planktonic foraminiferal genera. Furthermore, the morphological evolution of planktonic foraminifera chambers may involve adaptation to changes in the vertical structure of the living water column.
  • [1]
    Marszalek D S. The role of heavy skeletons in vertical movements of non-motile zooplankton[J]. Marine Behaviour and Physiology, 1982, 8(4): 295-303. doi: 10.1080/10236248209387026
    [2]
    Raven J A, Waite A M. The evolution of silicification in diatoms: inescapable sinking and sinking as escape?[J]. New Phytologist, 2004, 162(1): 45-61. doi: 10.1111/j.1469-8137.2004.01022.x
    [3]
    Aze T, Ezard T H G, Purvis A, et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data[J]. Biological Reviews, 2011, 86(4): 900-927. doi: 10.1111/j.1469-185X.2011.00178.x
    [4]
    Hemleben C, Spindler M, Anderson O R. Modern Planktonic Foraminifera[M]. New York: Springer-Verlag, 1989.
    [5]
    Rebotim A, Voelker A H L, Jonkers L, et al. Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic[J]. Biogeosciences, 2017, 14(4): 827-859. doi: 10.5194/bg-14-827-2017
    [6]
    Huisman J, Arrayás M, Ebert U, et al. How do sinking phytoplankton species manage to persist?[J]. The American Naturalist, 2002, 159(3): 245-254. doi: 10.1086/338511
    [7]
    Kahn N, Swift E. Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schuett[J]. Limnology and Oceanography, 1978, 23(4): 649-658. doi: 10.4319/lo.1978.23.4.0649
    [8]
    Walsby A E, Hayes P K, Boje R et al. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea[J]. New Phytologist, 1997, 136(3): 407-417. doi: 10.1046/j.1469-8137.1997.00754.x
    [9]
    Smayda T J. The suspension and sinking of phytoplankton in the sea[J]. Oceanography and Marine Biology, 1970, 8: 353-414.
    [10]
    Berger W H. Planktonic foraminifera: basic morphology and ecologic implications[J]. Journal of Paleontology, 1969, 43(6): 1369-1383.
    [11]
    Tyszka J. Morphospace of foraminiferal shells: results from the moving reference model[J]. Lethaia, 2006, 39(1): 1-12. doi: 10.1080/00241160600575808
    [12]
    Caromel A G M, Schmidt D N, Rayfield E J. Ontogenetic constraints on foraminiferal test construction[J]. Evolution & Development, 2017, 19(3): 157-168.
    [13]
    Caromel A G M, Schmidt D N, Phillips J C, et al. Hydrodynamic constraints on the evolution and ecology of planktic foraminifera[J]. Marine Micropaleontology, 2014, 106: 69-78. doi: 10.1016/j.marmicro.2014.01.002
    [14]
    Hsiang A Y, Elder L E, Hull P M. Towards a morphological metric of assemblage dynamics in the fossil record: a test case using planktonic foraminifera[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1691): 20150227. doi: 10.1098/rstb.2015.0227
    [15]
    Lipps J H. Ecology and paleoecology of planktic foraminifera[M]//Lipps J H, Berger W H, Buzas M A, et al. Foraminiferal Ecology and Paleoecology. Tulsa: SEPM Society for Sedimentary Geology, 1979: 62-104.
    [16]
    Bé A W H, Jongebloed W L, McIntyre A. X-ray microscopy of recent planktonic foraminifera[J]. Journal of Paleontology, 1969, 43(6): 1384-1396.
    [17]
    Brummer G J A, Hemleben C, Spindler M. Planktonic foraminiferal ontogeny and new perspectives for micropalaeontology[J]. Nature, 1986, 319(6048): 50-52. doi: 10.1038/319050a0
    [18]
    Brummer G J A, Hemleben C, Spindler M. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): a concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny)[J]. Marine Micropaleontology, 1987, 12: 357-381. doi: 10.1016/0377-8398(87)90028-4
    [19]
    Sverdlove M S, Bé A W H. Taxonomic and ecological significance of embryonic and juvenile planktonic foraminifera[J]. Journal of Foraminiferal Research, 1985, 15(4): 235-241. doi: 10.2113/gsjfr.15.4.235
    [20]
    Huber B T. Ontogenetic morphometrics of some Late Cretaceous trochospiral planktonic foraminifera from the austral realm[J]. Smithsonian Contributions to Paleobiology, 1994, 77: 1-85.
    [21]
    Donoghue P C J, Bengtson S, Dong X P, et al. Synchrotron X-ray tomographic microscopy of fossil embryos[J]. Nature, 2006, 442(7103): 680-683. doi: 10.1038/nature04890
    [22]
    Speijer R P, Van Loo D, Masschaele B, et al. Quantifying foraminiferal growth with high-resolution X-ray computed tomography: new opportunities in foraminiferal ontogeny, phylogeny, and paleoceanographic applications[J]. Geosphere, 2008, 4(4): 760-763. doi: 10.1130/GES00176.1
    [23]
    Briguglio A, Benedetti A. X-ray microtomography as a tool to present and discuss new taxa: the example of Risananeiza sp. from the late Chattian of Porto Badisco[J]. Rendiconti Online Societa Geologica Italiana, 2012, 21: 1072-1074.
    [24]
    Hohenegger J, Briguglio A. Axially oriented sections of Nummulitids: a tool to interpret larger benthic foraminiferal deposits[J]. Journal of Foraminiferal Research, 2012, 42(2): 134-142. doi: 10.2113/gsjfr.42.2.134
    [25]
    Briguglio A, Hohenegger J. Growth oscillation in larger foraminifera[J]. Paleobiology, 2014, 40(3): 494-509. doi: 10.1666/13051
    [26]
    Schmidt D N, Rayfield E J, Cocking A, et al. Linking evolution and development: synchrotron radiation X-ray tomographic microscopy of planktic foraminifers[J]. Palaeontology, 2013, 56(4): 741-749. doi: 10.1111/pala.12013
    [27]
    Caromel A G M, Schmidt D N, Fletcher I, et al. Morphological change during the ontogeny of the planktic foraminifera[J]. Journal of Micropalaeontology, 2016, 35(1): 2-19.
    [28]
    Korsun S, Hald M, Panteleeva N, et al. Biomass of foraminifera in the St. Anna Trough, Russian arctic continental margin[J]. Sarsia, 1998, 83(5): 419-431. doi: 10.1080/00364827.1998.10413701
    [29]
    Bé A W H, Tolderlund D S. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans[M]//Funnell B M, Riedel W K. The Micropaleontology of the Oceans. Cambridge: Cambridge University Press, 1971: 105-149.
    [30]
    Fok-Pun L, Komar P D. Settling velocities of planktonic foraminifera: density variations and shape effects[J]. Journal of Foraminiferal Research, 1983, 13(1): 60-68. doi: 10.2113/gsjfr.13.1.60
    [31]
    Oehmig R. Entrainment of planktonic foraminifera: effect of bulk density[J]. Sedimentology, 1993, 40(5): 869-877. doi: 10.1111/j.1365-3091.1993.tb01366.x
    [32]
    Schiebel R, Hemleben C. Planktic Foraminifers in the Modern Ocean[M]. Berlin Heidelberg: Springer, 2017.
    [33]
    Bijma J, Faber W W Jr, Hemleben C. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures[J]. Journal of Foraminiferal Research, 1990, 20(2): 95-116. doi: 10.2113/gsjfr.20.2.95
    [34]
    Schiebel R, Bijma J, Hemleben C. Population dynamics of the planktic foraminifer Globigerina bulloides from the eastern North Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1997, 44(9-10): 1701-1713. doi: 10.1016/S0967-0637(97)00036-8
    [35]
    Schmidt D N, Renaud S, Bollmann J. Response of planktic foraminiferal size to late Quaternary climate change[J]. Paleoceanography, 2003, 18(3): 1039.
    [36]
    Hecht A D, Savin S M. Phenotypic variation and oxygen isotope ratios in Recent planktonic foraminifera[J]. Journal of Foraminiferal Research, 1972, 2(2): 55-67. doi: 10.2113/gsjfr.2.2.55
    [37]
    Hecht A D. Intraspecific variation in recent populations of Globigerinoides ruber and Globigerinoides trilobus and their application to paleoenvironmental analysis[J]. Journal of Paleontology, 1974, 48(6): 1217-1234.
    [38]
    Renaud S, Schmidt D N. Habitat tracking as a response of the planktic foraminifer Globorotalia truncatulinoides to environmental fluctuations during the last 140 kyr[J]. Marine Micropaleontology, 2003, 49(1-2): 97-122. doi: 10.1016/S0377-8398(03)00031-8
    [39]
    Schmidt D N, Renaud S, Bollmann J, et al. Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation[J]. Marine Micropaleontology, 2004, 50(3-4): 319-338. doi: 10.1016/S0377-8398(03)00098-7

Catalog

    Article views (303) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return