Citation: | QIN Bingbin,XIONG Zhifang,LI Tiegang. Paleoceanographic applications of planktonic foraminiferal shell weights[J]. Marine Geology & Quaternary Geology,2023,43(4):1-9. DOI: 10.16562/j.cnki.0256-1492.2023071001 |
[1] |
Lohmann G P. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution[J]. Paleoceanography, 1995, 10(3): 445-457. doi: 10.1029/95PA00059
|
[2] |
Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Amsterdam: Elsevier, 2001.
|
[3] |
Wilson T. Salinity and the major elements of sea water[J]. Chemical Oceanography, 1975, 1(2): 365-413.
|
[4] |
Yu J M, Anderson R F, Rohling E J. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes[J]. Oceanography, 2014, 27(1): 16-25. doi: 10.5670/oceanog.2014.04
|
[5] |
Broecker W, Clark E. An evaluation of Lohmann's foraminifera weight dissolution index[J]. Paleoceanography, 2001, 16(5): 531-534. doi: 10.1029/2000PA000600
|
[6] |
Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297(5582): 833-836. doi: 10.1126/science.1072815
|
[7] |
Bijma J, Hönisch B, Zeebe R E. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(11): 1-7.
|
[8] |
de Villiers S. Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera[J]. Marine Biology, 2004, 144(1): 45-49. doi: 10.1007/s00227-003-1183-8
|
[9] |
Barker S, Archer D, Booth L, et al. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11[J]. Quaternary Science Reviews, 2006, 25(23-24): 3278-3293. doi: 10.1016/j.quascirev.2006.07.018
|
[10] |
Qin B B, Li T G, Xiong Z F, et al. Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: evidence for oceanic carbon storage and global climate influence[J]. Paleoceanography, 2017, 32(4): 351-370. doi: 10.1002/2016PA003039
|
[11] |
Johnstone H J H, Schulz M, Barker S, et al. Inside story: an X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera[J]. Marine Micropaleontology, 2010, 77(1-2): 58-70. doi: 10.1016/j.marmicro.2010.07.004
|
[12] |
Regenberg M, Beil S. Test appearance of the planktonic foraminifer Pulleniatina obliquiloculata as an indicator of calcite dissolution in deep-sea sediments[J]. Journal of Foraminiferal Research, 2016, 46(3): 224-236. doi: 10.2113/gsjfr.46.3.224
|
[13] |
Andersson A J. The oceanic CaCO3 cycle[M]//Treatise on Geochemistry (Second Edition). 2014, 8: 519-542.
|
[14] |
Qin B B, Li T G, Xiong Z F, et al. Calcification of planktonic foraminifer Pulleniatina obliquiloculata controlled by seawater temperature rather than ocean acidification[J]. Global and Planetary Change, 2020, 193: 103256. doi: 10.1016/j.gloplacha.2020.103256
|
[15] |
Berger W H. Planktonic foraminifera: selective solution and the lysocline[J]. Marine Geology, 1970, 8(2): 111-138. doi: 10.1016/0025-3227(70)90001-0
|
[16] |
Schiebel R, Spielhagen R F, Garnier J, et al. Modern planktic foraminifers in the high-latitude ocean[J]. Marine Micropaleontology, 2017, 136: 1-13. doi: 10.1016/j.marmicro.2017.08.004
|
[17] |
Song Q W, Qin B B, Tang Z, et al. Calcification of planktonic foraminifer Neogloboquadrina pachyderma (sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Sothern Ocean[J]. Science China Earth Sciences, 2022, 65(9): 1824-1836. doi: 10.1007/s11430-021-9924-7
|
[18] |
Russell A D, Hönisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4347-4361. doi: 10.1016/j.gca.2004.03.013
|
[19] |
Moy A D, Howard W R, Bray S G, et al. Reduced calcification in modern Southern Ocean planktonic foraminifera[J]. Nature Geoscience, 2009, 2(4): 276-280. doi: 10.1038/ngeo460
|
[20] |
de Moel H, Ganssen G M, Peeters F J C, et al. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?[J]. Biogeosciences, 2009, 6(9): 1917-1925. doi: 10.5194/bg-6-1917-2009
|
[21] |
Henehan M J, Evans D, Shankle M, et al. Size-dependent response of foraminiferal calcification to seawater carbonate chemistry[J]. Biogeosciences, 2017, 14(13): 3287-3308. doi: 10.5194/bg-14-3287-2017
|
[22] |
Marshall B J, Thunell R C, Henehan M J, et al. Planktonic foraminiferal area density as a proxy for carbonate ion concentration: a calibration study using the Cariaco Basin ocean time series[J]. Paleoceanography, 2013, 28(2): 363-376. doi: 10.1002/palo.20034
|
[23] |
Davis C V, Badger M P S, Bown P R, et al. The response of calcifying plankton to climate change in the Pliocene[J]. Biogeosciences, 2013, 10(9): 6131-6139. doi: 10.5194/bg-10-6131-2013
|
[24] |
Allen K A, Hönisch B, Eggins S M, et al. Trace element proxies for surface ocean conditions: a synthesis of culture calibrations with planktic foraminifera[J]. Geochimica et Cosmochimica Acta, 2016, 193: 197-221. doi: 10.1016/j.gca.2016.08.015
|
[25] |
Zarkogiannis S D, Antonarakou A, Tripati A, et al. Influence of surface ocean density on planktonic foraminifera calcification[J]. Scientific Reports, 2019, 9(1): 533. doi: 10.1038/s41598-018-36935-7
|
[26] |
Aldridge D, Beer C J, Purdie D A. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean[J]. Biogeosciences, 2012, 9(5): 1725-1739. doi: 10.5194/bg-9-1725-2012
|
[27] |
Pinsonneault A J, Matthews H D, Galbraith E D, et al. Calcium carbonate production response to future ocean warming and acidification[J]. Biogeosciences, 2012, 9(6): 2351-2364. doi: 10.5194/bg-9-2351-2012
|
[28] |
Qin B B, Jia Q, Xiong Z F, et al. Sustained deep Pacific carbon storage after the Mid-Pleistocene Transition linked to enhanced Southern Ocean stratification[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097121.
|
[29] |
Qin B B, Li T G, Xiong Z F, et al. Deep-water carbonate ion concentrations in the western tropical Pacific since the Mid-Pleistocene: a major perturbation during the Mid-Brunhes[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6876-6892. doi: 10.1029/2018JC014084
|
[30] |
Qin B B, Li T G, Xiong Z F, et al. Influences of Atlantic Ocean thermohaline circulation and Antarctic ice-sheet expansion on Pliocene deep Pacific carbonate chemistry[J]. Earth and Planetary Science Letters, 2022, 599: 117868. doi: 10.1016/j.jpgl.2022.117868
|
[31] |
Yu J M, Elderfield H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1-2): 73-86. doi: 10.1016/j.jpgl.2007.03.025
|
[32] |
Yu J M, Anderson R F, Jin Z D, et al. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle[J]. Quaternary Science Reviews, 2013, 76: 39-52. doi: 10.1016/j.quascirev.2013.06.020
|
[33] |
Farmer J R. Deepening the late Quaternary's deep ocean carbon mysteries[J]. Geophysical Research Letters, 2022, 49(13): e2022GL099161.
|
[34] |
Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149. doi: 10.2113/0540115
|
[35] |
Ziveri P, Gray W R, Anglada-Ortiz G, et al. Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean[J]. Nature Communications, 2023, 14(1): 805. doi: 10.1038/s41467-023-36177-w
|
[36] |
Sulpis O, Jeansson E, Dinauer A, et al. Calcium carbonate dissolution patterns in the ocean[J]. Nature Geoscience, 2021, 14(6): 423-428. doi: 10.1038/s41561-021-00743-y
|
[1] | GAO Yu, LIU Chunyang, HU Yu, CHEN Linying, LIANG Qianyong, FENG Dong, CHEN Duofu. The impact of change in fluid seepage intensity on iron and phosphorus cycling in chimney-like seep carbonates[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 96-104. DOI: 10.16562/j.cnki.0256-1492.2023100802 |
[2] | CAI Wenqin, HUANG Enqing, LIU Shuangquan, TIAN Jun. Massive deposition of oceanic diatom mat and its impact on the carbon-nitrogen cycle over glacial-interglacial periods[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 96-108. DOI: 10.16562/j.cnki.0256-1492.2023041801 |
[3] | YANG Shouye, JIA Qi, XU Xinning, WU Xuechao, LIAN Ergang. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901 |
[4] | SUN Zhilei, YIN Ping, XU Sinan, CAO Hong, XU Cuiling, ZHANG Xilin, GENG Wei, SUN Weixiang, WU Nengyou, ZHANG Dong, ZHAI Bin, LV Taiheng, ZHOU Yucheng, CAO Youwen, CHEN Ye. Observation and research progress of modern oceanic methane cycle[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 67-81. DOI: 10.16562/j.cnki.0256-1492.2022042801 |
[5] | XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020050801 |
[6] | HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. DOI: 10.16562/j.cnki.0256-1492.2020021401 |
[7] | ZHANG Guoliang, ZHAN Mingjun. Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 36-45. DOI: 10.16562/j.cnki.0256-1492.2019092201 |
[8] | GUO Jingteng, LI Tiegang, YU Xinke, XIONG Zhifang, CHANG Fengming. A PRELIMINARY EVALUATION ON B/CA OF PLANKTIC FORAMINIFERA AS A PROXY FOR SEAWATER PH: VITAL EFFECTS AND DISSOLUTION[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 109-118. DOI: 10.16562/j.cnki.0256-1492.2015.06.011 |
[9] | JIANG Kaixi, HE Wenxiang, PENG Li, CHEN Zulin, ZHU Junzhang, XIANG Nian. BURIAL DISSOLUTION OF ZHUJIANG REEF LIMESTONE ON THE LIUHUA CARBONATE PLATFORM, SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 61-71. DOI: 10.3724/SP.J.1140.2015.02061 |
[10] | SUN Hanjie, LI Tiegang, SUN Rongtao, XU Zhaokai, CHANG Fengming. FLUCTUATIONS OF CARBONATE CONTENT AND ITS CONTROL FACTORS IN THE WESTERN PHILIPPINE SEA FOR THE LAST 150KA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 149-156. DOI: 10.3724/SP.J.1140.2012.04149 |