Citation: | QIN Bingbin,XIONG Zhifang,LI Tiegang. Paleoceanographic applications of planktonic foraminiferal shell weights[J]. Marine Geology & Quaternary Geology,2023,43(4):1-9. DOI: 10.16562/j.cnki.0256-1492.2023071001 |
[1] |
Lohmann G P. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution[J]. Paleoceanography, 1995, 10(3): 445-457. doi: 10.1029/95PA00059
|
[2] |
Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Amsterdam: Elsevier, 2001.
|
[3] |
Wilson T. Salinity and the major elements of sea water[J]. Chemical Oceanography, 1975, 1(2): 365-413.
|
[4] |
Yu J M, Anderson R F, Rohling E J. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes[J]. Oceanography, 2014, 27(1): 16-25. doi: 10.5670/oceanog.2014.04
|
[5] |
Broecker W, Clark E. An evaluation of Lohmann's foraminifera weight dissolution index[J]. Paleoceanography, 2001, 16(5): 531-534. doi: 10.1029/2000PA000600
|
[6] |
Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297(5582): 833-836. doi: 10.1126/science.1072815
|
[7] |
Bijma J, Hönisch B, Zeebe R E. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(11): 1-7.
|
[8] |
de Villiers S. Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera[J]. Marine Biology, 2004, 144(1): 45-49. doi: 10.1007/s00227-003-1183-8
|
[9] |
Barker S, Archer D, Booth L, et al. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11[J]. Quaternary Science Reviews, 2006, 25(23-24): 3278-3293. doi: 10.1016/j.quascirev.2006.07.018
|
[10] |
Qin B B, Li T G, Xiong Z F, et al. Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: evidence for oceanic carbon storage and global climate influence[J]. Paleoceanography, 2017, 32(4): 351-370. doi: 10.1002/2016PA003039
|
[11] |
Johnstone H J H, Schulz M, Barker S, et al. Inside story: an X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera[J]. Marine Micropaleontology, 2010, 77(1-2): 58-70. doi: 10.1016/j.marmicro.2010.07.004
|
[12] |
Regenberg M, Beil S. Test appearance of the planktonic foraminifer Pulleniatina obliquiloculata as an indicator of calcite dissolution in deep-sea sediments[J]. Journal of Foraminiferal Research, 2016, 46(3): 224-236. doi: 10.2113/gsjfr.46.3.224
|
[13] |
Andersson A J. The oceanic CaCO3 cycle[M]//Treatise on Geochemistry (Second Edition). 2014, 8: 519-542.
|
[14] |
Qin B B, Li T G, Xiong Z F, et al. Calcification of planktonic foraminifer Pulleniatina obliquiloculata controlled by seawater temperature rather than ocean acidification[J]. Global and Planetary Change, 2020, 193: 103256. doi: 10.1016/j.gloplacha.2020.103256
|
[15] |
Berger W H. Planktonic foraminifera: selective solution and the lysocline[J]. Marine Geology, 1970, 8(2): 111-138. doi: 10.1016/0025-3227(70)90001-0
|
[16] |
Schiebel R, Spielhagen R F, Garnier J, et al. Modern planktic foraminifers in the high-latitude ocean[J]. Marine Micropaleontology, 2017, 136: 1-13. doi: 10.1016/j.marmicro.2017.08.004
|
[17] |
Song Q W, Qin B B, Tang Z, et al. Calcification of planktonic foraminifer Neogloboquadrina pachyderma (sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Sothern Ocean[J]. Science China Earth Sciences, 2022, 65(9): 1824-1836. doi: 10.1007/s11430-021-9924-7
|
[18] |
Russell A D, Hönisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4347-4361. doi: 10.1016/j.gca.2004.03.013
|
[19] |
Moy A D, Howard W R, Bray S G, et al. Reduced calcification in modern Southern Ocean planktonic foraminifera[J]. Nature Geoscience, 2009, 2(4): 276-280. doi: 10.1038/ngeo460
|
[20] |
de Moel H, Ganssen G M, Peeters F J C, et al. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?[J]. Biogeosciences, 2009, 6(9): 1917-1925. doi: 10.5194/bg-6-1917-2009
|
[21] |
Henehan M J, Evans D, Shankle M, et al. Size-dependent response of foraminiferal calcification to seawater carbonate chemistry[J]. Biogeosciences, 2017, 14(13): 3287-3308. doi: 10.5194/bg-14-3287-2017
|
[22] |
Marshall B J, Thunell R C, Henehan M J, et al. Planktonic foraminiferal area density as a proxy for carbonate ion concentration: a calibration study using the Cariaco Basin ocean time series[J]. Paleoceanography, 2013, 28(2): 363-376. doi: 10.1002/palo.20034
|
[23] |
Davis C V, Badger M P S, Bown P R, et al. The response of calcifying plankton to climate change in the Pliocene[J]. Biogeosciences, 2013, 10(9): 6131-6139. doi: 10.5194/bg-10-6131-2013
|
[24] |
Allen K A, Hönisch B, Eggins S M, et al. Trace element proxies for surface ocean conditions: a synthesis of culture calibrations with planktic foraminifera[J]. Geochimica et Cosmochimica Acta, 2016, 193: 197-221. doi: 10.1016/j.gca.2016.08.015
|
[25] |
Zarkogiannis S D, Antonarakou A, Tripati A, et al. Influence of surface ocean density on planktonic foraminifera calcification[J]. Scientific Reports, 2019, 9(1): 533. doi: 10.1038/s41598-018-36935-7
|
[26] |
Aldridge D, Beer C J, Purdie D A. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean[J]. Biogeosciences, 2012, 9(5): 1725-1739. doi: 10.5194/bg-9-1725-2012
|
[27] |
Pinsonneault A J, Matthews H D, Galbraith E D, et al. Calcium carbonate production response to future ocean warming and acidification[J]. Biogeosciences, 2012, 9(6): 2351-2364. doi: 10.5194/bg-9-2351-2012
|
[28] |
Qin B B, Jia Q, Xiong Z F, et al. Sustained deep Pacific carbon storage after the Mid-Pleistocene Transition linked to enhanced Southern Ocean stratification[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097121.
|
[29] |
Qin B B, Li T G, Xiong Z F, et al. Deep-water carbonate ion concentrations in the western tropical Pacific since the Mid-Pleistocene: a major perturbation during the Mid-Brunhes[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6876-6892. doi: 10.1029/2018JC014084
|
[30] |
Qin B B, Li T G, Xiong Z F, et al. Influences of Atlantic Ocean thermohaline circulation and Antarctic ice-sheet expansion on Pliocene deep Pacific carbonate chemistry[J]. Earth and Planetary Science Letters, 2022, 599: 117868. doi: 10.1016/j.jpgl.2022.117868
|
[31] |
Yu J M, Elderfield H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1-2): 73-86. doi: 10.1016/j.jpgl.2007.03.025
|
[32] |
Yu J M, Anderson R F, Jin Z D, et al. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle[J]. Quaternary Science Reviews, 2013, 76: 39-52. doi: 10.1016/j.quascirev.2013.06.020
|
[33] |
Farmer J R. Deepening the late Quaternary's deep ocean carbon mysteries[J]. Geophysical Research Letters, 2022, 49(13): e2022GL099161.
|
[34] |
Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149. doi: 10.2113/0540115
|
[35] |
Ziveri P, Gray W R, Anglada-Ortiz G, et al. Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean[J]. Nature Communications, 2023, 14(1): 805. doi: 10.1038/s41467-023-36177-w
|
[36] |
Sulpis O, Jeansson E, Dinauer A, et al. Calcium carbonate dissolution patterns in the ocean[J]. Nature Geoscience, 2021, 14(6): 423-428. doi: 10.1038/s41561-021-00743-y
|