WANG Peijie,HU Limin,YAN Tianhao,et al. The characteristics of sedimentary organic carbon in the mud area in the western North Yellow Sea since the Holocene[J]. Marine Geology & Quaternary Geology,2024,44(2):110-119. DOI: 10.16562/j.cnki.0256-1492.2023041802
Citation: WANG Peijie,HU Limin,YAN Tianhao,et al. The characteristics of sedimentary organic carbon in the mud area in the western North Yellow Sea since the Holocene[J]. Marine Geology & Quaternary Geology,2024,44(2):110-119. DOI: 10.16562/j.cnki.0256-1492.2023041802

The characteristics of sedimentary organic carbon in the mud area in the western North Yellow Sea since the Holocene

More Information
  • Received Date: April 17, 2023
  • Revised Date: May 25, 2023
  • Accepted Date: May 25, 2023
  • Available Online: July 11, 2023
  • The sedimentary environment of the mud area in the western North Yellow Sea is stable, and the sedimentary record is continuous, making it an excellent proxy for reconstructing paleoenvironment of the local region and surrounding watershed. Previous researches on the sedimentary organic carbon in the mud area are limited to its modern distribution characteristics through surface sediment analysis, and works on the long-term sedimentary processes and mechanisms of organic carbon remain insufficient. Core W03 in the mud area was used to reconstruct the sedimentary environment of organic carbon since the Holocene using sedimentary total organic carbon index, and to clarify the impact of climate and oceanic environmental changes on the source and deposition of organic carbon. During the period of sea level rise stagnation (10.3~9.8 cal.kaBP), a hard clay layer was developed rich in terrestrial organic carbon (60.7%). The turbulent sedimentary environment resulted in a relatively low total organic carbon content (average of only 0.22%). During the period of sea level rising (9.8~7.0 cal.kaBP), marine-sourced organic carbon (47.7%) boomed in a relatively stable sedimentary environment, which was conducive to the burial of organic carbon. Since the high sea level period (7.0 cal.kaBP to present), the Yellow Sea circulation system has been formed gradually, and the input of terrigenous organic carbon has changed correspondingly with the change of coastal current intensity under the East Asian winter monsoon scheme. The contribution of marine organic carbon was increased continuously to 50.0%, and so did the content of total organic carbon (0.58%). Therefore, sedimentary organic carbon in the mud area since the Holocene is controlled by sea level fluctuation and the resultant ocean circulation system.

  • [1]
    Mackenzie F T, Lerman A, Ver L M B. Role of the continental margin in the global carbon balance during the past three centuries [J]. Geology, 1998, 26(5): 423-426.
    [2]
    Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time [J]. Global and Planetary Change, 1989, 1(1-2): 97-122. doi: 10.1016/0921-8181(89)90018-0
    [3]
    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis: authors' closing comments [J]. Marine Chemistry, 1995, 49(2-3): 137-139. doi: 10.1016/0304-4203(95)00013-H
    [4]
    De Haas H, van Weering T C E, de Stigter H. Organic carbon in shelf seas: sinks or sources, processes and products [J]. Continental Shelf Research, 2002, 22(5): 691-717. doi: 10.1016/S0278-4343(01)00093-0
    [5]
    张明宇, 常鑫, 胡利民, 等. 东海内陆架有机碳的源—汇过程及其沉积记录[J]. 沉积学报, 2021, 39(3):593-609

    ZHANG Mingyu, CHANG Xin, HU Limin, et al. Source-to-sink process of organic carbon on the inner shelf of the East China Sea and its sedimentary records [J]. Acta Sedimentologica Sinica, 2021, 39(3): 593-609.
    [6]
    石学法, 胡利民, 乔淑卿, 等. 中国东部陆架海沉积有机碳研究进展: 来源、输运与埋藏[J]. 海洋科学进展, 2016, 34(3):313-327

    SHI Xuefa, HU Limin, QIAO Shuqing, et al. Progress in research of sedimentary organic carbon in the East China Sea: sources, dispersal and sequestration [J]. Advances in Marine Science, 2016, 34(3): 313-327.
    [7]
    赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报, 2017, 47(9):70-76

    ZHAO Meixun, DING Yang, YU Meng. Sources of sedimentary organic matter in China marginal sea surface sediments and implications of carbon sink [J]. Periodical of Ocean University of China, 2017, 47(9): 70-76.
    [8]
    秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989: 1-289

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: China Ocean Press, 1989: 1-289.
    [9]
    Xing L, Tao S Q, Zhang H L, et al. Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea [J]. Applied Geochemistry, 2011, 26(8): 1584-1593. doi: 10.1016/j.apgeochem.2011.06.024
    [10]
    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009
    [11]
    Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031
    [12]
    Liu J P, Milliman J D, Gao S. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea [J]. Geo-Marine Letters, 2001, 21(4): 212-218. doi: 10.1007/s00367-001-0083-5
    [13]
    Liu J, Saito Y, Kong X H, et al. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea [J]. Continental Shelf Research, 2009, 29(7): 846-855. doi: 10.1016/j.csr.2009.01.002
    [14]
    Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008
    [15]
    Li Y, Li A C, Huang P. Sedimentary evolution since the late Last Deglaciation in the western North Yellow Sea [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 152-162. doi: 10.1007/s00343-012-1040-z
    [16]
    李铁刚, 江波, 孙荣涛, 等. 末次冰消期以来东黄海暖流系统的演化[J]. 第四纪研究, 2007, 27(6):945-954 doi: 10.3321/j.issn:1001-7410.2007.06.009

    LI Tiegang, JIANG Bo, SUN Rongtao, et al. Evolution pattern of warm current system of the East China Sea and the Yellow Sea since the last deglaciation [J]. Quaternary Sciences, 2007, 27(6): 945-954. doi: 10.3321/j.issn:1001-7410.2007.06.009
    [17]
    Li T G, Nan Q Y, Jiang B, et al. Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation [J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 237-249. doi: 10.1007/s00343-009-9149-4
    [18]
    Nan Q Y, Li T G, Chen J X, et al. Holocene paleoenvironment changes in the northern Yellow Sea: evidence from alkenone-derived sea surface temperature [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 83-93. doi: 10.1016/j.palaeo.2017.01.031
    [19]
    鲁晓红, 陈颖军, 黄国培, 等. 黄渤海表层沉积物中正构烷烃和甾醇的分布及来源研究[J]. 生态环境学报, 2011, 20(6):1117-1122 doi: 10.3969/j.issn.1674-5906.2011.06.022

    LU Xiaohong, CHEN Yingjun, HUANG Guopei, et al. Distribution and sources of lipid biomarkers in surface sediments of the Yellow Sea and Bohai Sea [J]. Ecology and Environmental Sciences, 2011, 20(6): 1117-1122. doi: 10.3969/j.issn.1674-5906.2011.06.022
    [20]
    王星辰, 邢磊, 张海龙, 等. 北黄海-渤海表层沉积物中浮游植物生物标志物的分布特征及指示意义[J]. 中国海洋大学学报, 2014, 44(5):69-73,78

    WANG Xingchen, XING Lei, ZHANG Hailong, et al. Distribution of phytoplankton biomarkers in surface sediments from the North Yellow Sea and the Bohai Sea and its implication [J]. Periodical of Ocean University of China, 2014, 44(5): 69-73,78.
    [21]
    Xing L, Hou D, Wang X C, et al. Assessment of the sources of sedimentary organic matter in the Bohai Sea and the northern Yellow Sea using biomarker proxies [J]. Estuarine, Coastal and Shelf Science, 2016, 176: 67-75. doi: 10.1016/j.ecss.2016.04.009
    [22]
    操云云, 邢磊, 王星辰, 等. 渤海-北黄海表层沉积物中正构烷烃的组合特征及其指示意义的探讨[J]. 中国海洋大学学报, 2018, 48(3):104-113

    CAO Yunyun, XING Lei, WANG Xingchen, et al. Study on the indication of n-alkanes in surface sediments from the Bohai Sea and the North Yellow Sea [J]. Periodical of Ocean University of China, 2018, 48(3): 104-113.
    [23]
    Dang T X, Cao Y Y, Xing L. The stable carbon isotopic compositions of n-alkanes in sediments of the Bohai and North Yellow Seas: implications for sources of sedimentary organic matter [J]. Journal of Ocean University of China, 2021, 20(2): 340-348. doi: 10.1007/s11802-021-4637-z
    [24]
    郭世鑫. 近百年来北黄海浮游植物生产力和种群结构变化的生物标志物记录及影响因素[D]. 中国海洋大学硕士学位论文, 2015

    GUO Shixin. Biomarker records of phytoplankton productivity and community structure changes of the North Yellow Sea and its influencing factors over the last 100 years[D]. Master Dissertation of Ocean University of China, 2015.
    [25]
    Liu J G, Li A C, Chen M H. Environmental evolution and impact of the Yellow River sediments on deposition in the Bohai Sea during the last deglaciation [J]. Journal of Asian Earth Sciences, 2010, 38(1-2): 26-33. doi: 10.1016/j.jseaes.2009.12.013
    [26]
    Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP) [J]. Radiocarbon, 2020, 62(4): 779-820. doi: 10.1017/RDC.2020.68
    [27]
    Wentworth C K. A scale of grade and class terms for clastic sediments [J]. The Journal of Geology, 1922, 30(5): 377-392. doi: 10.1086/622910
    [28]
    Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
    [29]
    McManus J. Grain size determination and interpretation[M]. Techniques in Sedimentology, Oxford: Blackwell, 1988: 63-85.
    [30]
    李学刚, 宋金明. 海洋沉积物中碳的来源、迁移和转化[J]. 海洋科学集刊, 2004, 46(1):106-117

    LI Xuegang, SONG Jinming. Sources, removal and transformation of carbon in marine sediments [J]. Studia Marina Sinica, 2004, 46(1): 106-117.
    [31]
    Eckelmann W R, Broecker W S, Whitlock D W, et al. Implications of carbon isotopic composition of total organic carbon of some recent sediments and ancient oils [J]. AAPG Bulletin, 1962, 46(5): 699-704.
    [32]
    Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments [J]. Marine Chemistry, 2004, 92(1-4): 239-261. doi: 10.1016/j.marchem.2004.06.029
    [33]
    Wu J P, Calvert S E, Wong C S. Carbon and nitrogen isotope ratios in sedimenting particulate organic matter at an upwelling site off Vancouver island [J]. Estuarine, Coastal and Shelf Science, 1999, 48(2): 193-203. doi: 10.1006/ecss.1998.0409
    [34]
    Guo Z G, Li J Y, Feng J L, et al. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002 [J]. Chinese Science Bulletin, 2006, 51(17): 2133-2140. doi: 10.1007/s11434-006-2071-7
    [35]
    Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance [J]. Earth and Planetary Science Letters, 2015, 414: 77-86. doi: 10.1016/j.jpgl.2015.01.004
    [36]
    Yu M, Eglinton T I, Haghipour N, et al. Impacts of natural and human-induced hydrological variability on particulate organic carbon dynamics in the Yellow River [J]. Environmental Science & Technology, 2019, 53(3): 1119-1129.
    [37]
    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes [J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
    [38]
    李艳. 北黄海末次冰消期以来沉积特征及物源环境指示[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2011

    LI Yan. Sedimentary characteristics and implication to provenance and sedimentary environment since the last deglaciation in the North Yellow Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2011.
    [39]
    陈晓辉. 北黄海陆架晚第四纪地层结构与物源环境演变研究[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2014

    CHEN Xiaohui. Sedimentary stratigraphic structure and provenance environmental evolution in the North Yellow Sea during the late Quaternary[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2014.
    [40]
    Wu P, Xiao X T, Tao S Q, et al. Biomarker evidence for changes in terrestrial organic matter input into the Yellow Sea mud area during the Holocene [J]. Science China Earth Sciences, 2016, 59(6): 1216-1224. doi: 10.1007/s11430-016-5283-y
    [41]
    皮仲, 李铁刚, 类彦立. 中全新世以来南黄海中部沉积过程: 基于岩心粒度和有机质指标[J]. 海洋学报, 2019, 41(11):75-88

    PI Zhong, LI Tiegang, LEI Yanli. Sedimentary processes of central South Yellow Sea since the mid-Holocene based on grain size and organic matter indexes [J]. Haiyang Xuebao, 2019, 41(11): 75-88.
    [42]
    Wang L B, Yang Z S, Zhang R P, et al. Sea surface temperature records of core ZY2 from the central mud area in the South Yellow Sea during last 6200 years and related effect of the Yellow Sea Warm Current [J]. Chinese Science Bulletin, 2011, 56(15): 1588-1595. doi: 10.1007/s11434-011-4442-y
    [43]
    Xing L, Zhao M X, Zhang H L, et al. Biomarker evidence for paleoenvironmental changes in the southern Yellow Sea over the last 8200 years [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 1-11. doi: 10.1007/s00343-012-1045-7
    [44]
    Zhao X C, Tao S Q, Zhang R P, et al. Biomarker records of phytoplankton productivity and community structure changes in the Central Yellow Sea mud area during the mid-late Holocene [J]. Journal of Ocean University of China, 2013, 12(4): 639-646. doi: 10.1007/s11802-013-2271-0
    [45]
    李铁刚, 常凤鸣, 于心科. Younger Dryas事件与北黄海泥炭层的形成[J]. 地学前缘, 2010, 17(1):322-329

    LI Tiegang, CHANG Fengming, YU Xinke. Younger Dryas event and formation of peat layers in the Northern Yellow Sea [J]. Earth Science Frontiers, 2010, 17(1): 322-329.
    [46]
    肖尚斌, 李安春, 陈木宏, 等. 近8 ka东亚冬季风变化的东海内陆架泥质沉积记录[J]. 地球科学:中国地质大学学报, 2005, 30(5):573-581

    XIAO Shangbin, LI Anchun, CHEN Muhong, et al. Recent 8 ka mud records of the East Asian Winter monsoon from the inner shelf of the East China Sea [J]. Earth Science:Journal of China University of Geosciences, 2005, 30(5): 573-581.
    [47]
    闫天浩. 北黄海中部泥质区W03岩芯全新世以来沉积演化及对海平面变化的响应[D]. 中国海洋大学硕士学位论文, 2022

    YAN Tianhao. Sedimentary evolution of W03 core in the central mud area of the North Yellow Sea since Holocene and its response to sea level change[D]. Master Dissertation of Ocean University of China, 2022.
  • Related Articles

    [1]ZHU Wenjun, DU Xuexin, SHANG Luning, LI Panfeng, PAN Jun, QI Jianghao, MENG Yuanku, HU Gang. Spatiotemporal heterogeneity of the conjugate continental margin evolution in the South China Sea and future ocean drilling wells[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 110-123. DOI: 10.16562/j.cnki.0256-1492.2022062001
    [2]WANG Hongyu, ZHANG Feng, CAI Yuwei. Sedimentary evolution of the passive continental margin of the north sub-basin, Senegel Basin and its controlling factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 67-77. DOI: 10.16562/j.cnki.0256-1492.2019081501
    [3]XUE Bin, RUAN Aiguo, GAO Jinyao, GUO Yuanming, DING Yueping, LI Tiejun. INTEGRATED GEOPHYSICAL RESEARCH IN THE MIDDLE-NORTHERN CONTINENTAL MARGIN OF THE SOUTH CHINA SEA BASED ON WIDE-ANGLE SEISMIC PROFILE OBS2006-3[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 81-91. DOI: 10.3724/SP.J.1140.2013.06081
    [4]LI Sanzhong, YU Shan, ZHAO Shujuan, LIU Xin, GONG Shuyun, SUO Yanhui, DAI Liming, MA Yun, XU Liqing, CAO Xianzhi, WANG Pengcheng, SUN Wenjun, YANG Zhao, ZHU Junjiang. TECTONIC TRANSITION AND PLATE RECONSTRUCTIONS OF THE EAST ASIAN CONTINENTAL MAGIN[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 65-94. DOI: 10.3724/SP.J.1140.2013.03065
    [5]LI Sanzhong, SUO Yanhui, LIU Xin, DAI Liming, YU Shan, ZHAO Shujuan, MA Yun, WANG Xiaofei, CHENG Shixiu, XUE Youchen, XIONG Lijuan, AN Huiting. BASIC STRCUTURAL PATTERN AND TECTONIC MODELS OF THE SOUTH CHINA SEA: PROBLEMS, ADVANCES AND CONTROVERSIES[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 35-53. DOI: 10.3724/SP.J.1140.2012.06035
    [6]LI Tao, HU Wangshui, YU Shui, LONG Xiaojun, HE Yaoyao, WU Chan, CHEN Chuan. DUCTILE STRUCTURES IN GRAVITATIONAL DECOLLEMENT STRUCTURE SYSTEM AT PASSIVE CONTINENTAL MARGIN OF WEST AFRICAN[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 69-76. DOI: 10.3724/SP.J.1140.2012.03069
    [7]YANG Muzhuang, PANG Anding, SHA Zhibin. GEOLOGICAL MODELS OF GAS HYDRATES DEPOSITS ALONG THE CONTINENTAL MARGIN[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 85-90. DOI: 10.3724/SP.J.1140.2010.06085
    [8]WU Lushan, DENG Xiguang, LIANG Jinqiang, FU Shaoying. THE CHARACTERISTICS AND RESOURCE POTENTIAL OF GAS HYDRATES IN THE ANTARCTIC MARGINS[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 95-107. DOI: 10.3724/SP.J.1140.2010.01095
    [9]XU Zhaokai, CHOI Jinyong, LIM Dhongil, LI Tiegang, LI Anchun. CHARACTER AND ORIGIN OF AUTHIGENIC CARBONATES IN THE WESTERN CONTINENTAL SLOPE OF THE EAST JAPAN SEA[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 41-47. DOI: 10.3724/SP.J.1140.2009.02041
    [10]LU Fa-wei, ZHOU Zu-yi. EXPLORING FOR THE “RUPTURING CONTINENTAL LITHOSPHERE” PROGRAMS[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 109-116.
  • Cited by

    Periodical cited type(5)

    1. 周晴,贺茂勇,孔凡翠,张西营,程原原,饶辉辉. 锂同位素高精度测定进展、应用与发展趋势. 盐湖研究. 2025(01): 1-17 .
    2. 武雪超,杨守业. 海洋中的风化作用和反风化作用. 自然杂志. 2025(01): 23-32 .
    3. 徐飘飘,苏妮,连尔刚,王锐,杨守业. 长江口-东海陆架黏土中高活性铁的富集效应及环境控制机制. 海洋地质与第四纪地质. 2024(04): 54-64 . 本站查看
    4. 林勇杰,郑绵平. 青藏高原盐湖反风化作用与关键元素循环. 地球学报. 2024(05): 777-790 .
    5. 孔凡兴,张哲远,徐方建,董江,李安春,谷玉,胡利民,陈天宇,刘喜停. 末次冰消期以来东海内陆架沉积物活性铁命运及其环境响应. 古地理学报. 2024(06): 1483-1497 .

    Other cited types(1)

Catalog

    Article views (450) PDF downloads (55) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return