WANG Tingnan,HE Juan,JIA Jiayuan,et al. Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf[J]. Marine Geology & Quaternary Geology,2023,43(6):86-102. DOI: 10.16562/j.cnki.0256-1492.2023040601
Citation: WANG Tingnan,HE Juan,JIA Jiayuan,et al. Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf[J]. Marine Geology & Quaternary Geology,2023,43(6):86-102. DOI: 10.16562/j.cnki.0256-1492.2023040601

Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf

More Information
  • Received Date: April 05, 2023
  • Revised Date: July 17, 2023
  • Accepted Date: July 17, 2023
  • Available Online: August 22, 2023
  • Major algal biomarkers brassicasterol, dinosterol, and long-chain alkenones, representing diatoms, dinoflagellates, and haptophytes, respectively, were analyzed in seasonal suspended particles and surface sediments near Hangzhou Bay in the inland shelf of the East China Sea. The distribution characteristics and controlling factors of algal biomarkers in particles and sediments were studied. Results show that the spatial distribution characteristics of algal biomarkers in the surface sediments of the East China Sea inland shelf are obvious, and the abundances of algal biomarkers increase with the increase of water depth. The seasonal variation of algal biomarkers in particles is prominent, and the highest abundance in summer samples. Consistent with the results of previous studies, the temporal and spatial changes of biomarkers are mainly controlled by the changes of algae productivity. Due to the abundance of nutrients, high primary productivity is mainly distributed in the waters where the dilute water away from estuaries meets offshore currents. In summer, the coastal phytoplankton productivity is the highest due to the increased influence of nutrients carried by the diluted water of the Yangtze River. In addition, our results show a significant difference between the dominant sterols in surface sediments and particles. Brassicasterols dominate in particles, while dinosterols dominate in surface sediments. In addition to the common knowledge that the organic matter in particles mainly reflects the transient nature of local sites and in the surface sediment reflects the multi-year average of a wider area, we believed that the possible late hydrogenation of brassicasterol in sediments has a significant effect, leading to a significant decrease in brassicasterol abundances relative to dinosterol in the sediments. This study emphasized the complexity of sedimentary history of biomarkers in sediments. It is important to understand the relative changes of biomarkers in surface sediments for accurate interpretation of biomarkers in sedimentary records.

  • [1]
    Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281(5374): 200-206. doi: 10.1126/science.281.5374.200
    [2]
    Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins in the global carbon cycle[J]. Geophysical Research Letters, 2005, 32(1): L01602.
    [3]
    Dai M H, Su J Z, Zhao Y Y, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50(1): 593-626. doi: 10.1146/annurev-earth-032320-090746
    [4]
    Guo S J, Feng Y Y, Wang L, et al. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea[J]. Marine Ecology Progress Series, 2014, 516: 103-126. doi: 10.3354/meps10952
    [5]
    Liu X, Xiao W P, Landry M R, et al. Responses of phytoplankton communities to environmental variability in the East China Sea[J]. Ecosystems, 2016, 19(5): 832-849. doi: 10.1007/s10021-016-9970-5
    [6]
    Fang F T, Zhu Z Y, Ge J Z, et al. Reconstruction of the main phytoplankton population off the Changjiang Estuary in the East China Sea and its assemblage shift in recent decades: from observations to simulation[J]. Marine Pollution Bulletin, 2022, 178: 113638. doi: 10.1016/j.marpolbul.2022.113638
    [7]
    Furuya K, Hayashi M, Yabushita Y, et al. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 367-387. doi: 10.1016/S0967-0645(02)00460-5
    [8]
    Gong G C, Wen Y H, Wang B W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6-7): 1219-1236. doi: 10.1016/S0967-0645(03)00019-5
    [9]
    Zhu Z Y, Ng W M, Liu S M, et al. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area[J]. Estuarine, Coastal and Shelf Science, 2009, 84(3): 393-401. doi: 10.1016/j.ecss.2009.07.005
    [10]
    Yamaguchi H, Kim H C, Son Y B, et al. Seasonal and summer interannual variations of SeaWiFS chlorophyll a in the Yellow Sea and East China Sea[J]. Progress in Oceanography, 2012, 105: 22-29. doi: 10.1016/j.pocean.2012.04.004
    [11]
    Zhou W H, Yin K D, Long A M, et al. Spatial-temporal variability of total and size-fractionated phytoplankton biomass in the Yangtze River Estuary and adjacent East China Sea coastal waters, China[J]. Aquatic Ecosystem Health & Management, 2012, 15(2): 200-209.
    [12]
    Chen J, Liu J L. The spatial and temporal changes of chlorophyll-a and suspended matter in the eastern coastal zones of China during 1997–2013[J]. Continental Shelf Research, 2015, 95: 89-98. doi: 10.1016/j.csr.2015.01.004
    [13]
    Zhang H L, Qiu Z F, Sun D Y, et al. Seasonal and interannual variability of satellite-derived chlorophyll-a (2000–2012) in the Bohai Sea, China[J]. Remote Sensing, 2017, 9(6): 582. doi: 10.3390/rs9060582
    [14]
    Liu K K, Chao S Y, Lee H J, et al. Seasonal variation of primary productivity in the East China Sea: a numerical study based on coupled physical-biogeochemical model[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19-20): 1762-1782. doi: 10.1016/j.dsr2.2010.04.003
    [15]
    Wu P, Bi R, Duan S S, et al. Spatiotemporal variations of phytoplankton in the East China Sea and the Yellow Sea revealed by lipid biomarkers[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(1): 109-125. doi: 10.1002/2015JG003167
    [16]
    Furuya K, Kurita K, Odate T. Distribution of phytoplankton in the East China Sea in the winter of 1993[J]. Journal of Oceanography, 1996, 52(3): 323-333. doi: 10.1007/BF02235927
    [17]
    赖俊翔, 俞志明, 宋秀贤, 等. 长江口及邻近海域浮游植物色素分布与群落结构特征[J]. 环境科学, 2013, 34(9): 3405-3415 doi: 10.13227/j.hjkx.2013.09.021

    LAI Junxiang, YU Zhiming, SONG Xiuxian, et al. Phytoplankton pigment patterns and community structure in the Yangtze Estuary and its adjacent areas[J]. Environmental Science, 2013, 34(9): 3405-3415. doi: 10.13227/j.hjkx.2013.09.021
    [18]
    Luan Q S, Sun J, Shen Z L, et al. Phytoplankton assemblage of Yangtze River Estuary and the adjacent east China sea in summer, 2004[J]. Journal of Ocean University of China, 2006, 5(2): 123-131. doi: 10.1007/BF02919210
    [19]
    王丹, 孙军, 周锋, 等. 2006年6月长江口低氧区及邻近水域浮游植物[J]. 海洋与湖沼, 2008, 39(6): 619-627 doi: 10.3321/j.issn:0029-814X.2008.06.012

    WANG Dan, SUN Jun, ZHOU Feng, et al. Phytoplankton of Changjiang (Yangtze River) estuary hypoxia area and the adjacent East China Sea in June 2006[J]. Oceanologia et Limnologia Sinica, 2008, 39(6): 619-627. doi: 10.3321/j.issn:0029-814X.2008.06.012
    [20]
    Jiang Z B, Chen J F, Zhou F, et al. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf[J]. Continental Shelf Research, 2015, 101: 71-84. doi: 10.1016/j.csr.2015.04.009
    [21]
    Zhou Z X, Yu R C, Sun C J, et al. Impacts of Changjiang River discharge and kuroshio intrusion on the diatom and dinoflagellate blooms in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5244-5257. doi: 10.1029/2019JC015158
    [22]
    Kong C E, Yoo S, Jang C J. East China Sea ecosystem under multiple stressors: heterogeneous responses in the sea surface chlorophyll-a[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 151: 103078. doi: 10.1016/j.dsr.2019.103078
    [23]
    Lin Y C, Chung C C, Gong G C, et al. Diversity and abundance of haptophytes in the East China Sea[J]. Aquatic Microbial Ecology, 2014, 72(3): 227-240. doi: 10.3354/ame01697
    [24]
    Ye Q, Wu Y, Zhu Z Y, et al. Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the East China Sea[J]. Microbiologyopen, 2016, 5(2): 323-339. doi: 10.1002/mbo3.330
    [25]
    Wu D M, Dai Q P, Liu X Z, et al. Comparison of bacterial community structure and potential functions in hypoxic and non-hypoxic zones of the Changjiang Estuary[J]. PLoS One, 2019, 14(6): e0217431. doi: 10.1371/journal.pone.0217431
    [26]
    Xu L J, Yang D Z, Greenwood J, et al. Riverine and oceanic nutrients govern different algal bloom domain near the Changjiang estuary in summer[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(10): e2020JG005727.
    [27]
    Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1-2): 1-16. doi: 10.1016/j.jpgl.2008.07.012
    [28]
    Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21-22): 2851-2891. doi: 10.1016/j.quascirev.2011.07.009
    [29]
    Jeng W L, Huh C A. Lipids in suspended matter and sediments from the East China Sea Shelf[J]. Organic Geochemistry, 2004, 35(5): 647-660. doi: 10.1016/j.orggeochem.2003.12.002
    [30]
    张海龙, 邢磊, 赵美训, 等. 东海和黄海表层沉积物生物标志物的分布特征及古生态重建潜力[J]. 中国海洋大学学报, 2008, 38(6): 992-996

    ZHANG Hailong, XING Lei, ZHAO Meixun, et al. Distribution of biomarkers in surface sediments of the East China and Yellow Seas and its potential for paleoecology reconstruction[J]. Periodical of Ocean University of China, 2008, 38(6): 992-996.
    [31]
    Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1106-1115. doi: 10.1016/j.csr.2011.04.003
    [32]
    姜一晴, 邢磊, 张彭辉, 等. 长江口及东海陆架区颗粒物和沉积物中类脂生物标志物的对比研究[J]. 地球环境学报, 2012, 3(4): 982-994 doi: 10.7515/JEE201204008

    JIANG Yiqing, XING Lei, ZHANG Penghui, et al. Comparisons of lipid biomarkers from suspended particulates and sediments in the Changjiang Estuary and the East China Sea shelf[J]. Journal of Earth Environment, 2012, 3(4): 982-994. doi: 10.7515/JEE201204008
    [33]
    李凤, 贺行良, 徐刚, 等. 东海近岸表层沉积物中脂肪酸与脂肪醇的组成以及分布与来源[J]. 海洋地质与第四纪地质, 2016, 36(4): 13-18 doi: 10.16562/j.cnki.0256-1492.2016.04.002

    LI Feng, HE Xingliang, XU Gang, et al. Composition, distribution and source of fatty acids and fatty alcohols in marine surface sediments of the East China Sea[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 13-18. doi: 10.16562/j.cnki.0256-1492.2016.04.002
    [34]
    陈曦, 毕蓉, 张海龙, 等. 2013年和2011年夏季南黄海和东海表层悬浮颗粒物中生物标志物的对比分析[J]. 中国海洋大学学报, 2017, 47(8): 103-111

    CHEN Xi, BI Rong, ZHANG Hailong, et al. Contrastive analysis of biomarkers in suspended particles in the southern Yellow Sea and East China Sea between the summer of 2013 and 2011[J]. Periodical of Ocean University of China, 2017, 47(8): 103-111.
    [35]
    Bi R, Chen X, Zhang J, et al. Water mass control on phytoplankton spatiotemporal variations in the northeastern East China Sea and the Western Tsushima strait revealed by lipid biomarkers[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(4): 1318-1332. doi: 10.1002/2017JG004340
    [36]
    Cao Y L, Bi R, Wang X C, et al. The sources and burial of marine organic carbon in the Eastern China marginal seas[J]. Frontiers in Marine Science, 2022, 9: 824181. doi: 10.3389/fmars.2022.824181
    [37]
    王妃, 邢磊, 张海龙, 等. 类脂生物标志物重建近150年来东海陆架区DH5-1站位浮游植物生态结构及陆源输入的变化[J]. 中国海洋大学学报, 2012, 42(11): 66-72

    WANG Fei, XING Lei, ZHANG Hailong, et al. Applications of lipid biomarkers for reconstructing changes of phytoplankton ecological structure and terrestrial input in core DH5-1 from the shelf of the East China Sea during the last 150 years[J]. Periodical of Ocean University of China, 2012, 42(11): 66-72.
    [38]
    Xing L, Zhao M X, Zhang T, et al. Ecosystem responses to anthropogenic and natural forcing over the last 100 years in the coastal areas of the East China Sea[J]. The Holocene, 2016, 26(5): 669-677. doi: 10.1177/0959683615618248
    [39]
    Lian E G, Yang S Y, Wu H, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4790-4803. doi: 10.1002/2016JC011869
    [40]
    Zhang W X, Wu H, Hetland R D, et al. on mechanisms controlling the seasonal hypoxia hot spots off the Changjiang river estuary[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8683-8700. doi: 10.1029/2019JC015322
    [41]
    Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004
    [42]
    Zhao B, Yao P, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608.
    [43]
    Volkman J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506. doi: 10.1007/s00253-002-1172-8
    [44]
    丁玲, 邢磊, 赵美训, 等. 东海陆架区悬浮颗粒物中浮游植物生物标志物比例及种群结构意义[J]. 中国海洋大学学报, 2007, 37(S2): 143-148

    DING Ling, XING Lei, ZHAO Meixun, et al. Phytoplankton biomarker ratios in suspended particles from the continental shelf of the East China Sea and their implications in community structure reconstruction[J]. Periodical of Ocean University of China, 2007, 37(S2): 143-148.
    [45]
    Yang D Z, Yin B S, Sun J C, et al. Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer[J]. Journal of Marine Systems, 2013, 123-124: 1-18. doi: 10.1016/j.jmarsys.2013.04.002
    [46]
    Tseng Y F, Lin J, Dai M, et al. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River[J]. Biogeosciences, 2014, 11(2): 409-423. doi: 10.5194/bg-11-409-2014
    [47]
    Duan L Q, Song J M, Yuan H M, et al. The use of sterols combined with isotope analyses as a tool to identify the origin of organic matter in the East China Sea[J]. Ecological Indicators, 2017, 83: 144-157. doi: 10.1016/j.ecolind.2017.07.042
    [48]
    Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles, 2006, 20(3): GB3014.
    [49]
    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013
    [50]
    Wang C L, Hao Z, Gao J H, et al. Reservoir construction has reduced organic carbon deposition in the East China Sea by Half Since 2006[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087357.
    [51]
    Bai Y, He X Q, Pan D L, et al. Summertime Changjiang River plume variation during 1998-2010[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 6238-6257. doi: 10.1002/2014JC009866
    [52]
    Tian R C, Sicre M A, Saliot A. Aspects of the geochemistry of sedimentary sterols in the Chang Jiang estuary[J]. Organic Geochemistry, 1992, 18(6): 843-850. doi: 10.1016/0146-6380(92)90052-Y
    [53]
    Harvey H R, Macko S A. Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions[J]. Organic Geochemistry, 1997, 27(3-4): 129-140. doi: 10.1016/S0146-6380(97)00077-6
    [54]
    Wakeham S. Diagenesis of organic matter at the water-sediment interface[M]//Gianguzza A, Pelizzetti E, Sammartano S. Chemistry of Marine Water and Sediments. Berlin, Heidelberg: Springer, 2002: 147-164.
    [55]
    Bao R, McIntyre C, Zhao M X, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10): 791-794. doi: 10.1130/G37948.1
    [56]
    Wu X D, Wu B, Jiang M Y, et al. Distribution, sources and burial flux of sedimentary organic matter in the East China Sea[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1488-1501. doi: 10.1007/s00343-020-0037-2
    [57]
    Sun M Y, Wakeham S G. A study of oxic/anoxic effects on degradation of sterols at the simulated sediment-water interface of coastal sediments[J]. Organic Geochemistry, 1998, 28(12): 773-784. doi: 10.1016/S0146-6380(98)00043-6
    [58]
    Wakeham S G, Canuel E A. Degradation and preservation of organic matter in marine sediments[M]//Volkman J K. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin, Heidelberg: Springer, 2006: 295-321.
    [59]
    Gaskell S J, Eglinton G. Rapid hydrogenation of sterols in a contemporary lacustrine sediment[J]. Nature, 1975, 254(5497): 209-211.
    [60]
    Gagosian R B, Smith S O, Lee C, et al. Steroid transformations in Recent marine sediments[J]. Physics and Chemistry of the Earth, 1980, 12: 407-419. doi: 10.1016/0079-1946(79)90122-8
    [61]
    Gagosian R B, Heinzer F. Stenols and stanols in the oxic and anoxic waters of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1979, 43(4): 471-486. doi: 10.1016/0016-7037(79)90159-5
    [62]
    Wakeham S G. Reduction of stenols to stanols in particulate matter at oxic-anoxic boundaries in sea water[J]. Nature, 1989, 342(6251): 787-790. doi: 10.1038/342787a0
    [63]
    Wakeham S G. Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(10): 1749-1771. doi: 10.1016/0967-0637(95)00074-G
    [64]
    Sheridan C C, Lee C, Wakeham S G, et al. Suspended particle organic composition and cycling in surface and midwaters of the equatorial Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(11): 1983-2008. doi: 10.1016/S0967-0637(02)00118-8
    [65]
    Tolosa I, LeBlond N, Copin-Montégut C, et al. Distribution of sterol and fatty alcohol biomarkers in particulate matter from the frontal structure of the Alboran Sea (S. W. Mediterranean Sea)[J]. Marine Chemistry, 2003, 82(3-4): 161-183. doi: 10.1016/S0304-4203(03)00051-3
    [66]
    Gagosian R B, Lee C, Heinzer F. Processes controlling the stanol/stenol ratio in Black Sea seawater and sediments[J]. Nature, 1979, 280(5723): 574-576. doi: 10.1038/280574a0
    [67]
    Smith D J, Eglinton G, Morris R J, et al. Aspects of the steroid geochemistry of an interfacial sediment from the Peruvian upwelling[J]. Oceanologica Acta, 1983, 6(2): 211-219.
    [68]
    Wakeham S G, Hedges J I, Lee C, et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9-10): 2131-2162. doi: 10.1016/S0967-0645(97)00035-0
    [69]
    Arzayus K M, Canuel E A. Organic matter degradation in sediments of the York River estuary: effects of biological vs. physical mixing[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 455-464. doi: 10.1016/j.gca.2004.06.029
    [70]
    Nishimura M, Koyama T. The occurrence of stanols in various living organisms and the behavior of sterols in contemporary sediments[J]. Geochimica et Cosmochimica Acta, 1977, 41(3): 379-385. doi: 10.1016/0016-7037(77)90265-4
    [71]
    Nishimura M. 5β-isomers of stanols and stanones as potential markers of sedimentary organic quality and depositional paleoenvironments[J]. Geochimica et Cosmochimica Acta, 1982, 46(3): 423-432. doi: 10.1016/0016-7037(82)90233-2
    [72]
    Zhou F, Chai F, Huang D J, et al. Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system: the Changjiang (Yangtze River) estuary[J]. Frontiers in Marine Science, 2020, 7: 259. doi: 10.3389/fmars.2020.00259
    [73]
    Canuel E A, Martens C S. Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment-water interface[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1793-1806. doi: 10.1016/0016-7037(96)00045-2
    [74]
    王鹏, 吴莹, 刘素美, 等. 长江口外低氧区及其邻近海域表层沉积物反硝化微生物多样性和分布特征[J]. 微生物学报, 2021, 61(6): 1474-1487 doi: 10.13343/j.cnki.wsxb.20200791

    WANG Peng, WU Ying, LIU Sumei, et al. Diversity and distribution of denitrifying microorganisms in the surface sediments of the hypoxic zone near the Changjiang Estuary and its offshore[J]. Acta Microbiologica Sinica, 2021, 61(6): 1474-1487. doi: 10.13343/j.cnki.wsxb.20200791
    [75]
    吕晓霞, 翟世奎. 长江口柱状沉积物中甾醇的组成特征及其地球化学意义[J]. 海洋学报, 2006, 28(4): 96-101

    LÜ Xiaoxia, ZHAI Shikui. The distributions and geochemistry of sterols in core sediment from the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2006, 28(4): 96-101.
    [76]
    姜善春, 贾蓉芬, 王岩, 等. 中国南海北部湾海洋柱状沉积物中甾烯醇甾烷醇的演化[J]. 沉积学报, 1991, 9(S1): 97-102 doi: 10.14027/j.cnki.cjxb.1991.s1.013

    JIANG Shanchun, JIA Rongfen, WANG Yan, et al. The evolution of stenols and stanols in marine sediment core from Beibuwan gulf, South China Sea[J]. Acta Sedimentologica Sinica, 1991, 9(S1): 97-102. doi: 10.14027/j.cnki.cjxb.1991.s1.013
    [77]
    段毅, 崔明中, 马兰华. 南沙海域中大陆坡沉积物中甾醇的地球化学研究[J]. 地球化学, 1998, 27(1): 74-80 doi: 10.3321/j.issn:0379-1726.1998.01.009

    DUAN Yi, CUI Mingzhong, MA Lanhua. Geochemistry of sterols in marine sediments from the middle continental slope of Nansha sea[J]. Geochimica, 1998, 27(1): 74-80. doi: 10.3321/j.issn:0379-1726.1998.01.009
    [78]
    Qiu H, Zou L, Zhang M S, et al. Occurrence of different forms and implications of compound specific sterols in continental sediments of the northeast South China Sea[J]. Acta Geologica Sinica - English Edition, 2019, 93(2): 420-429. doi: 10.1111/1755-6724.13775
  • Related Articles

    [1]WANG Youkun, ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Subduction plate boundary thrust system and dynamic characteristics in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 173-180. DOI: 10.16562/j.cnki.0256-1492.2023082502
    [2]YANG Shouye, JIA Qi, XU Xinning, WU Xuechao, LIAN Ergang. Submarine reverse weathering and its effect on oceanic elements cycling[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 26-34. DOI: 10.16562/j.cnki.0256-1492.2023052901
    [3]DU Xuexin, ZHU Wenjun, MOU Mingjie, SHANG Luning, LI Panfeng, WEI Jia, YU Yiyong, MENG Yuanku, HU Gang. Study on drilling target area of subduction of Philippine Sea plate and island arc evolution[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 199-210. DOI: 10.16562/j.cnki.0256-1492.2022062002
    [4]MA Fangfang, LOU Da, DAI Liming, LI Sanzhong, DONG Hao, TAO Jianli, LI Fakun, WANG Liangliang, LIU Ze. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196. DOI: 10.16562/j.cnki.0256-1492.2019040102
    [5]WANG Yidan, YU Fusheng, LIU Zhina, WANG Yuheng, WANG Yiqun. Two-dimensional discrete element simulation of plate subduction deformation process: An insight into the genesis of East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 163-173. DOI: 10.16562/j.cnki.0256-1492.2019070306
    [6]GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. DOI: 10.16562/j.cnki.0256-1492.2019062801
    [7]DING Weiwei, LI Jiabiao. Seismic detection of deep structure for Southern Kyueshu-Palau Ridge and its possible implications for subduction initiation[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 98-103. DOI: 10.16562/j.cnki.0256-1492.2019071601
    [8]LI Chunfeng, LI Gang, LI Zilong, LIU Wenxiao, ZHANG Lulu, LU Zhezhe, CHEN Xuegang, YAO Zewei. Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 87-97. DOI: 10.16562/j.cnki.0256-1492.2019031501
    [9]ZHANG Zhengyi, DONG Dongdong, ZHANG Guangxu, ZHANG Guoliang. TOPOGRAPHIC CONSTRAINTS ON THE SUBDUCTION EROSION OF THE YAP ARC, WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 41-50. DOI: 10.16562/j.cnki.0256-1492.2017.01.005
    [10]HE Zhengjun, WEN Zhixin, WANG Zhaoming, YANG Xiaofa, LIU Xiaobing, GUO Chunen. FORMATION MECHANISM AND TECTONIC EVOLUTION OF BACK-ARC BASINS IN THE OKHOTSK SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 93-102. DOI: 10.16562/j.cnki.0256-1492.2016.04.011
  • Cited by

    Periodical cited type(2)

    1. 董杰,朱晓青,窦衍光,宋维宇,薛碧颖,邹亮. 胶州湾基底新元古代变花岗岩的发现与地质意义. 海洋地质与第四纪地质. 2024(06): 163-175+178-189 . 本站查看
    2. Ziwei SUN,Jin LIU,Yue ZHANG,Jinming SONG,Yuanyuan XIAO,Huamao YUAN,Ning LI,Xuegang LI. Compositional characteristics of sediment from Jiaozhou Bay in North China and the implication to the provenance. Journal of Oceanology and Limnology. 2023(05): 1729-1741 .

    Other cited types(1)

Catalog

    Article views (443) PDF downloads (34) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return