ZHANG Zihan,REN Yupeng,TAO Wei,et al. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology,2024,44(4):78-87. DOI: 10.16562/j.cnki.0256-1492.2023032301
Citation: ZHANG Zihan,REN Yupeng,TAO Wei,et al. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology,2024,44(4):78-87. DOI: 10.16562/j.cnki.0256-1492.2023032301

Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon

More Information
  • Received Date: March 22, 2023
  • Revised Date: November 26, 2023
  • High-speed turbidity currents are very destructive and threaten the safety of seabed constructions. An important channel for turbidity currents to move to the deep sea is submarine canyons, of which many have multiple branches. Once a branch meets the canyon with turbidity currents, the sand content and the velocity of turbidity currents could be increased, and so the destructive power. We studied the changes in sand content and movement velocity of turbidity currents in branch canyons converging into the main canyon, to which the scenario of turbidity currents in main-canyon-only was compared. Result show that the height, sand content and velocity of turbidity currents were increased at the head when confluence occurred, and decreased after the confluence occurred. However, the sand content and the velocity were still larger than those without confluence. This study provided guidelines for site selection and velocity calculation for field monitoring when turbidity currents confluence occurs in branch canyons.

  • [1]
    徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105

    XU Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10):98-105.]
    [2]
    Heerema C J, Talling P J, Cartigny M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532:116023. doi: 10.1016/j.jpgl.2019.116023
    [3]
    许莎莎, 冯秀丽, 冯利, 等. 南海西北部莺琼陆坡36.6 ka以来的浊流沉积[J]. 海洋地质与第四纪地质, 2020, 40(5):15-24

    XU Shasha, FENG Xiuli, FENG Li, et al. Turbidite records since 36.6 ka at the Yingqiong continental slope in the Northwest of South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5):15-24.]
    [4]
    Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8):675-678. doi: 10.1130/G45178.1
    [5]
    郑旭峰, 李安春, 万世明, 等. 冲绳海槽中全新世的浊流沉积及其控制因素[J]. 第四纪研究, 2014, 34(3):579-589 doi: 10.3969/j.issn.1001-7410.2014.03.12

    ZHENG Xufeng, LI Anchun, WAN Shiming, et al. The turbidity events in Okinawa trough during middle Holocene and its potential dominating mechanisms[J]. Quaternary Sciences, 2014, 34(3):579-589.] doi: 10.3969/j.issn.1001-7410.2014.03.12
    [6]
    Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8:275-310. doi: 10.1146/annurev.fl.08.010176.001423
    [7]
    徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5):552-558.]
    [8]
    Carter L, Gavey R, Talling P J, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2):58-67. doi: 10.5670/oceanog.2014.40
    [9]
    Wang X X, Cai F, Sun Z L, et al. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha Slope, South China Sea[J]. Geomorphology, 2022, 410:108285. doi: 10.1016/j.geomorph.2022.108285
    [10]
    李梦君, 毕乃双, 胡丽沙, 等. 南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义[J]. 海洋地质与第四纪地质, 2019, 39(4):23-33

    LI Mengjun, BI Naishang, HU Lisha, et al. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV "Jiaolong" in the Taiwan Submarine Canyon, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(4):23-33.]
    [11]
    王长盛, 朱俊江, 赵冬冬, 等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿, 2021, 37(3):1-15

    WANG Changsheng, ZHU Junjiang, ZHAO Dongdong, et al. Origin and evolution of submarine canyons[J]. Marine Geology Frontiers, 2021, 37(3):1-15.]
    [12]
    Yu H S, Chiang C S, Shen S M. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon[J]. Journal of Marine Systems, 2009, 76(4):369-382. doi: 10.1016/j.jmarsys.2007.07.010
    [13]
    Li S, Li W, Alves T M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, Northeast South China Sea[J]. Marine Geology, 2020, 424:106158. doi: 10.1016/j.margeo.2020.106158
    [14]
    Talling P J, Baker M L, Pope E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13(1):4193. doi: 10.1038/s41467-022-31689-3
    [15]
    Forel F A. Les ravins sous-lacustres des fleuves glaciaires[J]. Comptes Rendus de l’Académie des Sciences Paris, 1885, 101:725-728.
    [16]
    Kuenen P H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen, 1937, 8(2):327-351.
    [17]
    Felix M, Sturton S, Peakall J. Combined measurements of velocity and concentration in experimental turbidity currents[J]. Sedimentary Geology, 2005, 179(1-2):31-47. doi: 10.1016/j.sedgeo.2005.04.008
    [18]
    Nogueira H I S, Adduce C, Alves E, et al. Analysis of lock-exchange gravity currents over smooth and rough beds[J]. Journal of Hydraulic Research, 2013, 51(4):417-431. doi: 10.1080/00221686.2013.798363
    [19]
    Ho V L, Dorrell R M, Keevil G M, et al. Pulse propagation in turbidity currents[J]. Sedimentology, 2018, 65(2):620-637. doi: 10.1111/sed.12397
    [20]
    Bowen A J, Normark W R, Piper D J W. Modelling of turbidity currents on Navy submarine fan, California continental borderland[M]//Stow D A V. Deep‐Water Turbidite Systems. International Association of Sedimentologists, 1991: 7-23.
    [21]
    Stacey M W, Bowen A J. The vertical structure of turbidity currents and a necessary condition for self‐maintenance[J]. Journal of Geophysical Research:Oceans, 1988, 93(C4):3543-3553. doi: 10.1029/JC093iC04p03543
    [22]
    Abd El-Gawad S M, Pirmez C, Cantelli A, et al. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta[J]. Marine Geology, 2012, 326-328:55-66. doi: 10.1016/j.margeo.2012.06.003
    [23]
    Salles T, Mulder T, Gaudin M, et al. Simulating the 1999 Capbreton canyon turbidity current with a Cellular Automata model[J]. Geomorphology, 2008, 97(3-4):516-537. doi: 10.1016/j.geomorph.2007.09.005
    [24]
    Basani R, Janocko M, Cartigny M J B, et al. MassFLOW‐3DTM as a simulation tool for turbidity currents: some preliminary results[M]//Martinius A W, Ravnås R, Howell J A, et al. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Chichester: Wiley Blackwell, 2014: 587-608.
    [25]
    Sun Y N, Li J, Cao Z X, et al. Effect of tributary inflow on reservoir turbidity current[J]. Environmental Fluid Mechanics, 2023, 23(2):259-290. doi: 10.1007/s10652-022-09856-3
    [26]
    Heimsund S. Numerical simulation of turbidity currents: a new perspective for small-and large-scale sedimentological experiments[D]. Master Dissertation of the University of Bergen, 2007.
    [27]
    Heimsund S, Xu J P, Nemec W. Numerical simulation of recent turbidity currents in the Monterey Canyon system, offshore California[C]//AGU Fall Meeting Abstracts. 2007.
    [28]
    栾坤祥. 南海北部海底峡谷识别方法构建与峡谷特征分析[D]. 国家海洋局第一海洋研究所硕士学位论文, 2017

    LUAN Kunxiang. The construction identification method of submarine canyon and characteristics analysis of northern South China sea[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2017.]
    [29]
    张春生, 刘忠保, 施冬, 等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报, 2002, 20(1):25-29

    ZHANG Chunsheng, LIU Zhongbao, SHI Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1):25-29.]
  • Related Articles

    [1]WANG Yan, CHEN Bin, LI Rihui, XU Xiaoda, SU Dapeng. Transportion of suspended sediment in the southern mud area of Bohai Bay in summer: Characteristics and mechanism[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 109-121. DOI: 10.16562/j.cnki.0256-1492.2022020901
    [2]SHI Jian, CHEN Chunfeng, CHEN Jianwen, LIU Jun, LEI Baohua. Extraction of seismic velocity of marine strata and their characteristics in the South Yellow Sea basin[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 175-185. DOI: 10.16562/j.cnki.0256-1492.2018.03.017
    [3]ZHU Chaoqi, SHAN Hongxian, LIU Xiaolei, SHENG Liancheng, XING Congcong, WANG Zhenhao, JIA Yonggang. The superposed sawtooth model of suspended sediment concentration in the Yellow River subaqueous delta based on in-situ observation[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 195-201. DOI: 10.16562/j.cnki.0256-1492.2018.01.020
    [4]LIU Haojia, LI Yanlong, LIU Changling, DONG Chanying, WU Nengyou, SUN Jianye. CALCULATION MODEL FOR CRITICAL VELOCITY OF SAND MOVEMENT IN DECOMPOSED HYDRATE CEMENTED SEDIMENT[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 166-173. DOI: 10.16562/j.cnki.0256-1492.2017.05.017
    [5]WEI Xiao, WANG Yaping, YANG Yang, CHEN Jian, GAO Jianhua, WANG Aijun, LI Dongyi, HU Guodong. SUSPENDED SEDIMENT CONCENTRATIONS IN SHALLOW SEA: COMPARATIVE STUDY OF METHODS[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 161-170. DOI: 10.3724/SP.J.1140.2013.01161
    [6]BI Shipu, HU Gang, HE Yongjun, ZHANG Yong. REMOTE SENSING MONITORING OF SURFACE SUSPENDED SEDIMENTS AT YANGTZE ESTUARY IN THE PAST TWO DECADES[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 17-24. DOI: 10.3724/SP.J.1140.2011.05017
    [7]ZHANG Cunyong, FENG Xiuli. VERTICAL CHANGES IN SUSPENDED SEDIMENT CONCENTRATION IN THE LIANYUNGANG NEARSHORE AREA[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 49-57. DOI: 10.3724/SP.J.1140.2011.02049
    [8]ZHENG Tongming, ZHAO Jiaju, AN Chengbang, TAO Shichen, LÜ Yanbin, WANG Zongli. STUDY OF POLLEN CONCENTRATES FOR AMS 14C DATING IN BARKOL LAKE[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 83-86. DOI: 10.3724/SP.J.1140.2010.01083
    [9]ZHOU Liangyong, CHEN Bin, LIU Jian, HU Gang, LIANG Yuan. OBSERVATION OF CURRENTS AND SUSPENDED SEDIMENT CONCENTRATION OFF NORTHERN JIANGSU COAST, CHINA[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 17-24. DOI: 10.3724/SP.J.1140.2009.06017
    [10]CHEN Bin, HUANG Haijun, MEI Bing. CHARACTERISTICS OF SEDIMENT TRANSPORTATION NEAR XIAOQING ESTUARY[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 35-42. DOI: 10.3724/SP.J.1140.2009.05035

Catalog

    Article views (49) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return