LIU Xuyang,WANG Chun,GUO Pingping,et al. Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland[J]. Marine Geology & Quaternary Geology,2024,44(1):44-54. DOI: 10.16562/j.cnki.0256-1492.2023031701
Citation: LIU Xuyang,WANG Chun,GUO Pingping,et al. Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland[J]. Marine Geology & Quaternary Geology,2024,44(1):44-54. DOI: 10.16562/j.cnki.0256-1492.2023031701

Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland

More Information
  • Received Date: March 16, 2023
  • Revised Date: April 10, 2023
  • Available Online: November 30, 2023
  • Iron oxide bound organic carbon is the main pathway for long-term stability of organic carbon. However, study of its mechanism remains weak. To understand the impact of estuarine wetland reclamation of paddy field on soil iron-carbon binding characteristics, we measured the soil iron-bound organic carbon (Fe-OC) and its related indicators in the natural reed (Phragmite australis) wetland and paddy field reclamation in Minjiang River estuary, Fujian Province. Results show that the wetland reclamation significantly affected the soil oxidation and reduction condition, and the redox process significantly affected the transformation of iron (Fe) phase in soil. After the wetland reclamation, the content of bivalent iron [Fe(Ⅱ)], trivalent iron [Fe(Ⅲ)], active total iron (HCl-Fet), and Fe(Ⅲ)/Fe(Ⅱ) in the soil significantly decreased by 24.68%, 52.56%, 51.45%, and 35.68%, respectively (P<0.05). The content of free Fe oxide (Fed) and amorphous iron (Feo) in the soil significantly decreased by 21.64% and 29.24%, respectively (P<0.05), but the content of complex iron (Fep) increased. In addition, the wetland reclamation significantly affected the soil carbon retention, and the content of Fe-OC and soil organic carbon (SOC) in the soil significantly decreased by 39.03% and 18.42% after the reclamation (P<0.05). In both reed wetland and paddy field, soil Fe-OC was combined dominantly through adsorption. The contribution rate of paddy field soil Fe-OC to SOC (fFe-OC) was significantly higher than that of reed wetland (P<0.05). Finally. there were significant positive correlations (P<0.01) between soil TN, water content, conductivity, Fe, SOC, dissolved organic carbon, and Fe-OC. This study provided scientific guidance for wetland restoration and increasing soil carbon sequestration.

  • [1]
    Sasmito S D, Taillardat P, Clendenning J N, et al. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review [J]. Global Change Biology, 2019, 25(12): 4291-4302. doi: 10.1111/gcb.14774
    [2]
    Krause L, Klumpp E, Nofz I, et al. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols [J]. Geoderma, 2020, 374: 114421. doi: 10.1016/j.geoderma.2020.114421
    [3]
    Xia S P, Song Z L, Li Q, et al. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C-δ15N, and lignin biomarker [J]. Global Change Biology, 2021, 27(2): 417-434. doi: 10.1111/gcb.15403
    [4]
    Fluet-Chouinard E, Stocker B D, Zhang Z, et al. Extensive global wetland loss over the past three centuries [J]. Nature, 2023, 614(7947): 281-286. doi: 10.1038/s41586-022-05572-6
    [5]
    Galford G L, Melillo J, Mustard J F, et al. The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions [J]. Earth Interactions, 2010, 14(15): 1-24. doi: 10.1175/2010EI327.1
    [6]
    Girsang S S, Correa T Q, Quilty J R, et al. Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel [J]. Soil and Tillage Research, 2020, 202: 104647. doi: 10.1016/j.still.2020.104647
    [7]
    崔保山, 谢湉, 王青, 等. 大规模围填海对滨海湿地的影响与对策[J]. 中国科学院院刊, 2017, 32(4):418-425

    CUI Baoshan, XIE Tian, WANG Qing, et al. Impact of large-scale reclamation on coastal wetlands and implications for ecological restoration, compensation, and sustainable exploitation framework [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(4): 418-425.
    [8]
    Xia S P, Song Z L, Van Zwieten L, et al. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China [J]. Global Change Biology, 2022, 28(20): 6065-6085. doi: 10.1111/gcb.16325
    [9]
    Tan L S, Ge Z M, Ji Y H, et al. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss [J]. Global Ecology and Biogeography, 2022, 31(12): 2541-2563. doi: 10.1111/geb.13597
    [10]
    张鑫磊, 宋怡轩, 张洁, 等. 围垦植稻对崇明东滩湿地产甲烷微生物的影响[J]. 农业环境科学学报, 2020, 39(2):411-417

    ZHANG Xinlei, SONG Yixuan, ZHANG Jie, et al. Effects of reclamation and cultivating rice on CH4-producing microorganisms in Chongming Dongtan Wetland, China [J]. Journal of Agro-Environment Science, 2020, 39(2): 411-417.
    [11]
    Wang F, Wang T, Gustave W, et al. Spatial-temporal patterns of organic carbon sequestration capacity after long-term coastal wetland reclamation [J]. Agriculture, Ecosystems & and Environment, 2023, 341: 108209.
    [12]
    王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5):1041-1050

    WANG Luying, QIN Lei, LÜ Xianguo, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon [J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050.
    [13]
    段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2):202-211

    DUAN Xun, LI Zhe, LIU Miao, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization [J]. Advances in Earth Science, 2022, 37(2): 202-211.
    [14]
    Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature, 2012, 483(7388): 198-200. doi: 10.1038/nature10855
    [15]
    Duan X, Yu X F, Li Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands [J]. Soil Biology and Biochemistry, 2020, 149: 107949. doi: 10.1016/j.soilbio.2020.107949
    [16]
    Wan D, Ye T H, Lu Y, et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils [J]. European Journal of Soil Science, 2019, 70(6): 1153-1163.
    [17]
    Zhao Q, Poulson S. R, Obrist D, et al. Iron-bound organic carbon in forest soils: quantification and characterization [J]. Biogeosciences, 2016, 13(16): 4777-4788. doi: 10.5194/bg-13-4777-2016
    [18]
    仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 2012, 67(9):1165-1180

    TONG Chuan, HUANG Jianfang, WANG Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary [J]. Acta Geographica Sinica, 2012, 67(9): 1165-1180.
    [19]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    LU Rukun. Analysis Methods of Soil Science and Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [20]
    Song L, Tian P, Zhang J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of Northeast China [J]. Science of the Total Environment, 2017, 609: ,1303-1311. doi: 10.1016/j.scitotenv.2017.08.017
    [21]
    Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils [J]. Biology and Fertility of Soils, 2000, 30(5): 374-387.
    [22]
    Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459
    [23]
    Kostka J E, Luther III G W. Partitioning and speciation of solid phase iron in saltmarsh sediments [J]. Geochimica et Cosmochimica Acta, 1994, 58(7): 1701-1710. doi: 10.1016/0016-7037(94)90531-2
    [24]
    Chen C M, Dynes J J, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & and Technology, 2014, 48(23): 13751-13759.
    [25]
    陈留美, 赵东波, 韩光中, 等. 中国稻田土壤铁流失及其环境意义[J]. 中国科学:地球科学, 2022, 5265(7):127753-129167

    CHEN Liumei, ZHAO Dongbo, HAN Guangzhong, et al. Iron loss of paddy soil in China and its environmental implications [J]. Science China:Earth Sciences, 2022, 5265(7): 127753-129167.
    [26]
    Giannetta B, Siebecker M G, Zaccone C, et al. Iron (Ⅲ) fate after complexation with soil organic matter in fine silt and clay fractions: an EXAFS spectroscopic approach [J]. Soil and Tillage Research, 2020, 200: 104617. doi: 10.1016/j.still.2020.104617
    [27]
    Longman J, Faust J C, Bryce C, et al. Organic carbon burial with reactive iron across global environments [J]. Global Biogeochemical Cycles, 2022, 36(11): e2022GB007447. doi: 10.1029/2022GB007447
    [28]
    Li Y, Fu C C, Zeng L, et al. Black carbon contributes substantially to allochthonous carbon storage in deltaic vegetated coastal habitats [J]. Environmental Science and & Technology, 2021, 55(9): 6495-6504.
    [29]
    Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments [J]. Geophysical Research Letters, 2016, 43(3): 1149-1157. doi: 10.1002/2015GL067388
    [30]
    Jones M E, Beckler J S, Taillefert M. The flux of soluble organic-iron (Ⅲ) complexes from sediments represents a source of stable iron (Ⅲ) to estuarine waters and to the continental shelf [J]. Limnology and Oceanography, 2011, 56(5): 1811-1823. doi: 10.4319/lo.2011.56.5.1811
    [31]
    Chen N, Fu Q L, Wu T L, et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil [J]. Environmental Science and & Technology, 2021, 55(20): 14281-14293.
    [32]
    Wei L, Zhu Z K, Razavi B S, et al. Visualization and quantification of carbon “rusty sink” by rice root iron plaque: mechanisms, functions, and global implications [J]. Global Change Biology, 2022, 28(22): 6711-6727. doi: 10.1111/gcb.16372
    [33]
    Yao Y, Wang L L, Peduruhewa J G, et al. The coupling between iron and carbon and iron reducing bacteria control carbon sequestration in paddy soils [J]. Catena, 2023, 223: 106937. doi: 10.1016/j.catena.2023.106937
    [34]
    Riedel T, Zak D, Biester H, et al. T. Iron traps terrestrially derived dissolved organic matter at redox interfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105. doi: 10.1073/pnas.1221487110
    [35]
    Wang W, Sardans J, Zeng C, et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland [J]. Geoderma, 2014, 232-234: 459-470. doi: 10.1016/j.geoderma.2014.06.004
    [36]
    Howard J, Sutton-Grier A, Herr D, et al. Clarifying the role of coastal and marine systems in climate mitigation [J]. Frontiers in Ecology and the Environment, 2017, 15(1): 42-50. doi: 10.1002/fee.1451
    [37]
    Button E S, Chadwick D R, Jones D L. Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy [J]. Geoderma, 2022, 409: 115646. doi: 10.1016/j.geoderma.2021.115646
    [38]
    Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon [J]. Biogeochemistry, 2018, 137(1-2): 27-49. doi: 10.1007/s10533-017-0410-1
    [39]
    Faust J C, Tessin A, Fisher B J, et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments [J]. Nature Communications, 2021, 12(1): 275-284. doi: 10.1038/s41467-020-20550-0
    [40]
    Setia R, Smith P, Marschner P, Gottschalk, P, et al. Simulation of salinity effects on past, present, and future soil organic carbon stocks [J]. Environmental Science and & Technology, 2012, 46(3): 1624-1631.
    [41]
    Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 25-35. doi: 10.1016/j.gca.2006.08.047
    [42]
    Duan X, Li Z, Li Y H, et al. Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming [J]. Soil Biology and Biochemistry, 2023, 179: 108972. doi: 10.1016/j.soilbio.2023.108972
    [43]
    Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014
    [44]
    林于蓝, 陈钰, 尹晓雷, 等. 围垦养殖与退塘还湿对闽江河口湿地土壤铁碳结合特征的影响[J]. 环境科学学报, 2022, 42(7):466-477

    LIN Yulan, CHEN Yu, YIN Xiaolei, et al. Effects of reclamation and pond returning on iron-bound organic carbon characteristics in the soil of Minjiang estuarine wetland [J]. Acta Scientiae Circumstantiae, 2022, 42(7): 466-477.
    [45]
    Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014
    [46]
    Zhao Y P, Xiang W, Ma M, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration? [J]. Plant and Soil, 2019, 443(1-2): 575-590. doi: 10.1007/s11104-019-04245-0
    [47]
    Wang Y Y, Wang H, He J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communications, 2017, 8(1): 15972-9. doi: 10.1038/ncomms15972
    [48]
    Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau [J]. Geophysical Research Letters, 2016, 43(19): 10-286-10294.
    [49]
    Huang X Y, Liu X W, Liu J L, et al. Iron-bound organic carbon and their determinants in peatlands of China [J]. Geoderma, 2021, 391: 114974. doi: 10.1016/j.geoderma.2021.114974
    [50]
    杨颖, 吴福忠, 吴秋霞, 等. 陆地生态系统土壤铁结合态有机碳: 含量, 分布与调控[J]. 科学通报, 2023, 68(6):695-704 doi: 10.1360/TB-2022-0728

    YANG Ying, WU Fuzhong, WU Qiuxia, et al. Soil organic carbon associated with iron oxides in terrestrial ecosystems: content, distribution and control [J]. Chinese Science Bulletin, 2023, 68(6): 695-704. doi: 10.1360/TB-2022-0728
  • Related Articles

    [1]CHEN Yi, DAI Zhijun, PANG Wenhong, LIANG Xixing, LUO Jiejun, XIONG Yuan. Dynamic variation of sand spit in the Dafeng River estuary, Beibu Gulf[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 43-54. DOI: 10.16562/j.cnki.0256-1492.2023102101
    [2]LI Haiqi, WANG Aijun, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, LI Yunhai. Spatio-temporal variations in grain size of surficial sediment on tidal flat of Langqi Island in Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 14-24. DOI: 10.16562/j.cnki.0256-1492.2023082302
    [3]WANG Aijun, LI Haiqi, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, RAN Chang, TAO Shuqin, LIU Zitong, YU Qian. Patterns and controlling factors of seasonal erosion and accretion of estuarine tidal flat in the Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2023091101
    [4]LIANG Xixing, WANG Riming, DAI Zhijun, WANG Jie, HUANG Hu, LI Shushi. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 107-118. DOI: 10.16562/j.cnki.0256-1492.2022091201
    [5]MA Xiaohong, HAN Zongzhu, BI Shipu, HU Gang, ZHANG Yong, XU Chengfen. Heavy mineral composition in surface sediments of the Minjiang River estuary and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 87-95. DOI: 10.16562/j.cnki.0256-1492.2018.01.009
    [6]LIU Wei, FAN Daidu, TU Junbiao, LU Jun. Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 41-51. DOI: 10.16562/j.cnki.0256-1492.2018.01.005
    [7]LU Huiquan, WU Chengqiang, XU Yan. CHARACTERISTICS AND ORIGIN OF THE TIDAL SAND RIDGES OFF THE MINJIANG RIVER ESTUARY, SOUTHEASTERN CHINA[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 27-36. DOI: 10.3724/SP.J.1140.2014.02027
    [8]LI Jiasheng, GAO Jianhua, LI Jun, WANG Zhenyan, YAN Jie, BAI Fenglong, CHENG Yan. DISTRIBUTION AND CONTROLLING FACTORS OF MAJOR ELEMENTS IN SEDIMENTS OF THE YALU RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 25-31. DOI: 10.3724/SP.J.1140.2010.01025
    [9]HU Gang, LIU Jian, SHI Lianqiang, WU Xiaoyong. COASTAL EROSION OF THE YANGTZE ESTUARY[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 9-15. DOI: 10.3724/SP.J.1140.2009.06009
    [10]HU Gang, SHEN Huan-ting, ZHUANG Ke-lin, ZHOU Liang-yong, LIU Jian. EVOLUTION PATTERN OF COASTAL EROSION IN THE YANGTZE RIVER ESTUARY[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 13-21.
  • Cited by

    Periodical cited type(9)

    1. 刘鸿,徐华宁,刘欣欣,陈江欣,张菲菲,王小杰,颜中辉,杨佳佳,杨睿. 海洋地球物理数据处理现状及展望. 海洋地质与第四纪地质. 2024(03): 40-52 . 本站查看
    2. 王小杰,刘欣欣,颜中辉,刘鸿,杨佳佳. 基于曲波域模型优化的多次波压制方法在浅地层剖面的应用. 石油物探. 2024(06): 1155-1162 .
    3. 周东红,段新意. 浅水环境下气云发育区高孔低胶结地层地震资料成像策略研究——以渤海莱北地区A油田为例. 石油物探. 2023(01): 105-118 .
    4. 邢子浩,蔡砥柱,张林,陈靓,孟庆杰,王瑞,李奇,陈治国,鲁旭. 基于整形正则化非平稳回归技术的匹配滤波压制单道地震鬼波方法及应用. 地球物理学进展. 2023(01): 502-512 .
    5. 龙成,孙辉,安永宁. 海上风电场址浅地层剖面信息采集及关键处理技术. 水道港口. 2023(03): 473-479 .
    6. 易虎,詹文欢,闵伟,吴晓川,李健,冯英辞,任治坤. 小多道地震震源效果在海域活动断裂探测中的对比研究. 地震地质. 2022(02): 333-348 .
    7. 邢子浩,陈靓,杨德鹏,杨册,翟继锋,周大森,王明,韦成龙. 基于正则化非平稳回归技术的自适应匹配相减在单道地震多次波压制中的应用. 海洋地质前沿. 2021(02): 70-76 .
    8. 王小杰,颜中辉,刘俊,刘欣欣,杨佳佳. 基于模型优化的广义自由表面多次波压制技术在印度洋深水海域的应用. 海洋地质与第四纪地质. 2021(05): 221-230 . 本站查看
    9. 颜中辉,王小杰,刘媛媛,徐华宁,杨佳佳,杨长清,杨传胜. 东海多次波压制的关键技术. 海洋地质前沿. 2020(07): 64-72 .

    Other cited types(3)

Catalog

    Article views (113) PDF downloads (52) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return