ZHANG Qinyi,WU Daidai,LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology,2022,42(3):62-75. DOI: 10.16562/j.cnki.0256-1492.2022112201
Citation: ZHANG Qinyi,WU Daidai,LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology,2022,42(3):62-75. DOI: 10.16562/j.cnki.0256-1492.2022112201

Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment

More Information
  • Received Date: November 21, 2021
  • Revised Date: March 22, 2022
  • Organoclastic sulfate reduction (OSR) exists extensively within normal marine sediments, whereas, sulfate reduction coupled with anaerobic oxidation of methane (SR-AOM) are dominated process in the cold-seep areas. How to distinguish these two sulfate reduction pathways is of great significance to the study of biogeochemical processes in extreme environments. Here, in order to further understand the characteristics of multiple sulfur isotopes of authigenic minerals associated with SR-AOM in the cold seep and their modeling applications, this study conducts extensive investigations into the research results of multiple sulfur isotopes related to SR-AOM at home and abroad, mainly focusing on the multiple sulfur isotopic characteristics of pyrite and barite of SR-AOM. Based on this, the widely used steady-state box model and 1-D diagenetic reaction-transport model are proposed for pyrite and barite respectively. The pyrite of SR-AOM origin has higher δ34S and Δ33S values than that of OSR. The δ34S and Δ33S values of pyrite formed by SR-AOM shows a negative correlation, which is different from that of OSR. The negative Δ33S-δ´34S correlation of barite significantly different from that of OSR-induced pore water sulfate reveals a positive correlation. The multiple sulfur isotopic characteristics of authigenic minerals related to SR-AOM in the cold seep can effectively trace the evolution of sulfur isotopes and assist to distinguish SR-AOM from OSR. This provides an effective basis for further research on biogeochemical processes in extreme environments and for tracing potential gas hydrate deposits.

  • [1]
    Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes [J]. Earth-Science Reviews, 2005, 75(1-4): 59-83.
    [2]
    Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates [J]. Reviews of Geophysics, 2017, 55(1): 126-168. doi: 10.1002/2016RG000534
    [3]
    Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment [J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 299-327. doi: 10.1146/annurev.ea.11.050183.001503
    [4]
    Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change [J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x
    [5]
    Johnson J E, Goldfinger C, Suess E. Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin [J]. Marine Geology, 2003, 202(1-2): 79-120. doi: 10.1016/S0025-3227(03)00268-8
    [6]
    Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018
    [7]
    Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601. doi: 10.1073/pnas.0800885105
    [8]
    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
    [9]
    叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学-中国地质大学学报, 2013, 38(6):1299-1308 doi: 10.3799/dqkx.2013.127

    YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the Northern South China Sea since the Late Younger Dryas [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127
    [10]
    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019
    [11]
    Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2767-2779. doi: 10.1016/j.gca.2005.01.002
    [12]
    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
    [13]
    Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine Geochemistry. 2nd ed. Berlin, Heidelberg: Springer, 2006: 271-309.
    [14]
    Liu J R, Pellerin A, Izon G, et al. The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron [J]. Earth and Planetary Science Letters, 2020, 536: 116165. doi: 10.1016/j.jpgl.2020.116165
    [15]
    Jørgensen B B, Nelson D C. Sulfide oxidation in marine sediments: Geochemistry meets microbiology[M]//Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry - Past and Present. Special Paper of the Geological Society of America, Boulder, Colorado, 2004: 63-81.
    [16]
    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
    [17]
    Lin Z Y, Sun X M, Strauss H, et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea [J]. Geochimica et Cosmochimica Acta, 2017, 211: 153-173. doi: 10.1016/j.gca.2017.05.015
    [18]
    邬黛黛, 吴能友, 张美, 等. 东沙海域SMI与甲烷通量的关系及对水合物的指示[J]. 地球科学-中国地质大学学报, 2013, 38(6):1309-1320 doi: 10.3799/dqkx.2013.128

    WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1309-1320. doi: 10.3799/dqkx.2013.128
    [19]
    McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia [J]. Nature, 2015, 526(7574): 531-535. doi: 10.1038/nature15512
    [20]
    Wegener G, Krukenberg V, Riedel D, et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria [J]. Nature, 2015, 526(7574): 587-590. doi: 10.1038/nature15733
    [21]
    Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation [J]. Nature, 2012, 491(7425): 541-546. doi: 10.1038/nature11656
    [22]
    Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351(6274): 703-707. doi: 10.1126/science.aad7154
    [23]
    Crémière A, Pellerin A, Wing B A, et al. Multiple sulfur isotopes in methane seep carbonates track unsteady sulfur cycling during anaerobic methane oxidation [J]. Earth and Planetary Science Letters, 2020, 532: 115994. doi: 10.1016/j.jpgl.2019.115994
    [24]
    Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118. doi: 10.1016/j.gca.2003.07.017
    [25]
    Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients [J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9
    [26]
    Böttcher M E, Boetius A, Rickert D. Sulfur isotope fractionation during microbial sulfate reduction associated with anaerobic methane oxidation[Z]. TERRA NOSTRA, 2003, 3, 89.
    [27]
    Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog [J]. Geology, 2010, 38(5): 415-418. doi: 10.1130/G30723.1
    [28]
    Jørgensen B B, Findlay A J, Pellerin A. The biogeochemical sulfur cycle of marine sediments [J]. Frontiers in Microbiology, 2019, 10: 849. doi: 10.3389/fmicb.2019.00849
    [29]
    Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species [J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179. doi: 10.1016/S0016-7037(97)81466-4
    [30]
    Miao X M, Feng X L, Liu X T, et al. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite [J]. Marine and Petroleum Geology, 2021, 133: 105231. doi: 10.1016/j.marpetgeo.2021.105231
    [31]
    Raven M R, Sessions A L, Fischer W W, et al. Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur [J]. Geochimica et Cosmochimica Acta, 2016, 186: 120-134. doi: 10.1016/j.gca.2016.04.037
    [32]
    Akam S A, Lyons T W, Coffin R B, et al. Carbon-sulfur signals of methane versus crude oil diagenetic decomposition and U-Th age relationships for authigenic carbonates from asphalt seeps, southern Gulf of Mexico [J]. Chemical Geology, 2021, 581: 120395. doi: 10.1016/j.chemgeo.2021.120395
    [33]
    Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? [J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009
    [34]
    Pierre C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin [J]. Chemical Geology, 2017, 449: 158-164. doi: 10.1016/j.chemgeo.2016.11.005
    [35]
    Lin Z Y, Sun X M, Strauss H, et al. Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimentary environment [J]. Marine Geology, 2018, 403: 271-284. doi: 10.1016/j.margeo.2018.06.010
    [36]
    Liu J R, Pellerin A, Wang J S, et al. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation [J]. Geochimica et Cosmochimica Acta, 2022, 316: 309-330. doi: 10.1016/j.gca.2021.09.026
    [37]
    冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6):1047-1056

    FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056.
    [38]
    Johnston D T. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle [J]. Earth-Science Reviews, 2011, 106(1-2): 161-183. doi: 10.1016/j.earscirev.2011.02.003
    [39]
    Ono S, Wing B, Johnston D, et al. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles [J]. Geochimica Et Cosmochimica Acta, 2006, 70(9): 2238-2252. doi: 10.1016/j.gca.2006.01.022
    [40]
    Tostevin R, Turchyn A V, Farquhar J, et al. Multiple sulfur isotope constraints on the modern sulfur cycle [J]. Earth and Planetary Science Letters, 2014, 396: 14-21. doi: 10.1016/j.jpgl.2014.03.057
    [41]
    Farquhar J, Johnston D T, Wing B A, et al. Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record [J]. Geobiology, 2003, 1(1): 27-36. doi: 10.1046/j.1472-4669.2003.00007.x
    [42]
    Hulston J R, Thode H G. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects [J]. Journal of Geophysical Research, 1965, 70(14): 3475-3484. doi: 10.1029/JZ070i014p03475
    [43]
    Young E D, Galy A, Nagahara H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance [J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1095-1104. doi: 10.1016/S0016-7037(01)00832-8
    [44]
    Rudnicki M D, Elderfield H, Spiro B. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 777-789. doi: 10.1016/S0016-7037(00)00579-2
    [45]
    Wortmann U G, Bernasconi S M, Böttcher M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction [J]. Geology, 2001, 29(7): 647-650. doi: 10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2
    [46]
    Farquhar J, Johnston D T, Wing B A. Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction [J]. Geochimica et Cosmochimica Acta, 2007, 71(24): 5862-5875. doi: 10.1016/j.gca.2007.08.028
    [47]
    Antler G, Turchyn A V, Ono S, et al. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction [J]. Geochimica et Cosmochimica Acta, 2017, 203: 364-380. doi: 10.1016/j.gca.2017.01.015
    [48]
    Knittel K, Wegener G, Boetius A. Anaerobic methane oxidizers[M]//McGenity T J. Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Springer International Publishing, 2018: 1-21.
    [49]
    Canfield D E. Biogeochemistry of sulfur isotopes [J]. Reviews in Mineralogy & Geochemistry, 2001, 43(1): 607-636.
    [50]
    Pellerin A, Antler G, Holm S A, et al. Large sulfur isotope fractionation by bacterial sulfide oxidation [J]. Science Advances, 2019, 5(7): eaaw1480. doi: 10.1126/sciadv.aaw1480
    [51]
    Fry B, Cox J, Gest H, et al. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds [J]. Journal of Bacteriology, 1986, 165(1): 328-330. doi: 10.1128/jb.165.1.328-330.1986
    [52]
    Habicht K S, Canfield D E, Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite [J]. Geochimica et Cosmochimica Acta, 1998, 62(15): 2585-2595. doi: 10.1016/S0016-7037(98)00167-7
    [53]
    Peckmann J, Thiel V. Carbon cycling at ancient methane–seeps [J]. Chemical Geology, 2003, 205(3-4): 443-467.
    [54]
    Finster K. Microbiological disproportionation of inorganic sulfur compounds [J]. Journal of Sulfur Chemistry, 2008, 29(3-4): 281-292. doi: 10.1080/17415990802105770
    [55]
    Turchyn A V, Brrchert V, Lyons T W, et al. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach [J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2011-2024. doi: 10.1016/j.gca.2010.01.004
    [56]
    Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.
    [57]
    Peketi A, Mazumdar A, Joao H M, et al. Coupled C–S–Fe geochemistry in a rapidly accumulating marine sedimentary system: Diagenetic and depositional implications [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 2865-2883. doi: 10.1002/2015GC005754
    [58]
    Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea [J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001
    [59]
    Lin Q, Wang J S, Algeo T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea [J]. Marine Geology, 2016, 379: 100-108. doi: 10.1016/j.margeo.2016.05.016
    [60]
    Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea [J]. Chemical Geology, 2016, 440: 26-41. doi: 10.1016/j.chemgeo.2016.07.007
    [61]
    Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea [J]. Journal of Asian Earth Sciences, 2016, 123: 213-223. doi: 10.1016/j.jseaes.2016.04.007
    [62]
    Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane [J]. Geology, 2015, 43(7): 619-622. doi: 10.1130/G36688.1
    [63]
    Goldhaber M B, Kaplan I R. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California [J]. Marine Chemistry, 1980, 9(2): 95-143. doi: 10.1016/0304-4203(80)90063-8
    [64]
    Jørgensen B B. A theoretical model of the stable sulfur isotope distribution in marine sediments [J]. Geochimica et Cosmochimica Acta, 1979, 43(3): 363-374. doi: 10.1016/0016-7037(79)90201-1
    [65]
    Masterson A L. Multiple sulfur isotope applications in diagenetic models and geochemical proxy records[D]. Doctoral Dissertation of Harvard University, Graduate School of Arts & Sciences, 2016.
    [66]
    Gong S G, Peng Y B, Bao H M, et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane [J]. Earth and Planetary Science Letters, 2018, 504: 13-20. doi: 10.1016/j.jpgl.2018.09.036
    [67]
    Neretin L N, Böttcher M E, Jørgensen B B, et al. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2081-2093. doi: 10.1016/S0016-7037(03)00450-2
    [68]
    Turchyn A V, Antler G, Byrne D, et al. Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385 [J]. Global and Planetary Change, 2016, 141: 82-90. doi: 10.1016/j.gloplacha.2016.03.004
    [69]
    Teichert B M A, Chevalier N, Gussone N, et al. Sulfate-dependent anaerobic oxidation of methane at a highly dynamic bubbling site in the Eastern Sea of Marmara (Çinarcik Basin) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 153: 79-91. doi: 10.1016/j.dsr2.2017.11.014
    [70]
    常鑫, 张明宇, 谷玉, 等. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12):1306-1320 doi: 10.11867/j.issn.1001-8166.2020.105

    CHANG Xin, ZHANG Mingyu, GU Yu, et al. Formation mechanism and controlling factors of authigenic pyrite in mud sediments on the shelf of the Yellow Sea and the East China Sea [J]. Advances in Earth Science, 2020, 35(12): 1306-1320. doi: 10.11867/j.issn.1001-8166.2020.105
    [71]
    Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope [J]. Earth and Planetary Science Letters, 2011, 309(1-2): 89-99.
    [72]
    Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1531): 25-38. doi: 10.1098/rsta.1985.0027
    [73]
    Gong S G, Hu Y, Li N, et al. Environmental controls on sulfur isotopic compositions of sulfide minerals in seep carbonates from the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 96-105. doi: 10.1016/j.jseaes.2018.04.037
    [74]
    Formolo M J, Lyons T W. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2013, 119: 264-285. doi: 10.1016/j.gca.2013.05.017
    [75]
    Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8
    [76]
    张美, 陆红锋, 邬黛黛, 等. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2017, 37(6):178-188

    ZHANG Mei, LU Hongfeng, WU Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188.
    [77]
    Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6
    [78]
    Pellerin A, Antler G, Røy H, et al. The sulfur cycle below the sulfate-methane transition of marine sediments [J]. Geochimica et Cosmochimica Acta, 2018, 239: 74-89. doi: 10.1016/j.gca.2018.07.027
    [79]
    康绪明, 古丽, 刘素美. 春季黄渤海沉积物中酸可挥发性硫与黄铁矿的分布特征及影响因素[J]. 海洋环境科学, 2014, 33(1):1-7

    KANG Xuming, GU Li, LIU Sumei. Distributions and influence factors of Acid Volatile Sulfide and pyrite in the Bohai Sea and Yellow Sea in spring [J]. Marine Environmental Science, 2014, 33(1): 1-7.
    [80]
    Rickard D, Luther G W. Chemistry of iron sulfides [J]. Chemical Reviews, 2007, 107(2): 514-562. doi: 10.1021/cr0503658
    [81]
    Shawar L, Halevy I, Said-Ahmad W, et al. Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments [J]. Geochimica et Cosmochimica Acta, 2018, 241: 219-239. doi: 10.1016/j.gca.2018.08.048
    [82]
    Price F T, Shieh Y N. Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures [J]. Chemical Geology, 1979, 27(3): 245-253. doi: 10.1016/0009-2541(79)90042-1
    [83]
    Butler I B, Böttcher M E, Rickard D, et al. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records [J]. Earth and Planetary Science Letters, 2004, 228(3-4): 495-509. doi: 10.1016/j.jpgl.2004.10.005
    [84]
    Chen T T, Sun X M, Lin Z Y, et al. Deciphering the geochemical link between seep carbonates and enclosed pyrite: A case study from the northern South China sea [J]. Marine and Petroleum Geology, 2021, 128: 105020. doi: 10.1016/j.marpetgeo.2021.105020
    [85]
    李鑫, 曹红, 耿威, 等. 碳酸盐晶格硫研究进展[J]. 海洋地质与第四纪地质, 2020, 40(3):119-131

    LI Xin, CAO Hong, GENG Wei, et al. Research progress in carbonate associated sulfate [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 119-131.
    [86]
    Deusner C, Holler T, Arnold G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration [J]. Earth and Planetary Science Letters, 2014, 399: 61-73. doi: 10.1016/j.jpgl.2014.04.047
    [87]
    Liu X T, Li A C, Fike D A, et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation [J]. Marine Geology, 2020, 429: 106307. doi: 10.1016/j.margeo.2020.106307
    [88]
    Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur [J]. Science, 1994, 266(5193): 1973-1975. doi: 10.1126/science.11540246
    [89]
    Peckmann J, Goedert J L, Heinrichs T, et al. The Late Eocene 'Whiskey Creek' methane-seep deposit (western Washington State) [J]. Facies, 2003, 48(1): 241-253. doi: 10.1007/BF02667542
    [90]
    Lichtschlag A, Kamyshny A, Ferdelman T G, et al. Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea) [J]. Geochimica et Cosmochimica Acta, 2013, 105: 130-145. doi: 10.1016/j.gca.2012.11.025
    [91]
    Pellerin A, Bui T H, Rough M, et al. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: A case study from Mangrove Lake, Bermuda [J]. Geochimica et Cosmochimica Acta, 2015, 149: 152-164. doi: 10.1016/j.gca.2014.11.007
    [92]
    Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the mesoproterozoic [J]. Science, 2005, 310(5753): 1477-1479. doi: 10.1126/science.1117824
    [93]
    Johnston D T, Farquhar J, Wing B A, et al. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators [J]. American Journal of Science, 2005, 305(6-8): 645-660. doi: 10.2475/ajs.305.6-8.645
    [94]
    Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria [J]. Geochimica Et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6
    [95]
    Weber H S, Thamdrup B, Habicht K S. High sulfur isotope fractionation associated with anaerobic oxidation of methane in a low-sulfate, iron-rich environment [J]. Frontiers in Earth Science, 2016, 4: 61.
    [96]
    Masterson A, Alperin M J, Berelson W M, et al. Interpreting multiple sulfur isotope signals in modern anoxic sediments using a full diagenetic model (California-Mexico margin: Alfonso Basin) [J]. American Journal of Science, 2018, 318(5): 459-490. doi: 10.2475/05.2018.02
    [97]
    Ono S, Keller N S, Rouxel O, et al. Sulfur-33 constraints on the origin of secondary pyrite in altered oceanic basement [J]. Geochimica et Cosmochimica Acta, 2012, 87: 323-340. doi: 10.1016/j.gca.2012.04.016
    [98]
    Pasquier V, Fike D A, Halevy I. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone [J]. Nature Communications, 2021, 12(1): 4403. doi: 10.1038/s41467-021-24753-x
    [99]
    Zhang M, Lu H F, Guan H X, et al. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea [J]. Acta Oceanologica Sinica, 2018, 37(7): 20-27. doi: 10.1007/s13131-018-1241-1
    [100]
    Strauss H, Bast R, Cording A, et al. Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple stable sulphur isotopes [J]. Isotopes in Environmental and Health Studies, 2012, 48(1): 166-179. doi: 10.1080/10256016.2012.648930
    [101]
    Sim M S, Bosak T, Ono S. Large sulfur isotope fractionation does not require disproportionation [J]. Science, 2011, 333(6038): 74-77. doi: 10.1126/science.1205103
    [102]
    Böttcher M E, Thamdrup B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1573-1581. doi: 10.1016/S0016-7037(00)00622-0
    [103]
    Johnston D T, Gill B C, Masterson A, et al. Placing an upper limit on cryptic marine sulphur cycling [J]. Nature, 2014, 513(7519): 530-533. doi: 10.1038/nature13698
    [104]
    Mills J V, Antler G, Turchyn A V. Geochemical evidence for cryptic sulfur cycling in salt marsh sediments [J]. Earth and Planetary Science Letters, 2016, 453: 23-32. doi: 10.1016/j.jpgl.2016.08.001
    [105]
    Sassen R, Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes [J]. Chemical Geology, 2004, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032
    [106]
    Riedinger N, Brunner B, Krastel S, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The argentine continental margin [J]. Frontiers in Earth Science, 2017, 5: 33. doi: 10.3389/feart.2017.00033
    [107]
    Lonsdale P. A deep-sea hydrothermal site on a strike-slip fault [J]. Nature, 1979, 281(5732): 531-534. doi: 10.1038/281531a0
    [108]
    Suess E, Bohrmann G, von Huene R, et al. Fluid venting in the eastern Aleutian subduction zone [J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B2): 2597-2614. doi: 10.1029/97JB02131
    [109]
    Castellini D G, Dickens G R, Snyder G T, et al. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico [J]. Chemical Geology, 2006, 226(1-2): 1-30. doi: 10.1016/j.chemgeo.2005.08.008
    [110]
    Joye S B, MacDonald I R, Montoya J P, et al. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines [J]. Biogeosciences, 2005, 2(3): 295-309. doi: 10.5194/bg-2-295-2005
    [111]
    Aquilina L, Dia A N, Boulègue J, et al. Massive barite deposits in the convergent margin off Peru: implications for fluid circulation within subduction zones [J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1233-1245. doi: 10.1016/S0016-7037(96)00402-4
    [112]
    Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites [J]. Earth and Planetary Science Letters, 2002, 203(1): 165-180. doi: 10.1016/S0012-821X(02)00830-0
    [113]
    Snyder G T, Dickens G R, Castellini D G. Labile barite contents and dissolved barium concentrations on Blake Ridge: new perspectives on barium cycling above gas hydrate systems [J]. Journal of Geochemical Exploration, 2007, 95(1-3): 48-65. doi: 10.1016/j.gexplo.2007.06.001
    [114]
    Hein J R, Zierenberg R A, Maynard J B, et al. Barite-forming environments along a rifted continental margin, Southern California Borderland [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1327-1349. doi: 10.1016/j.dsr2.2007.04.011
    [115]
    Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9
    [116]
    Antler G, Turchyn A V, Herut B, et al. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments [J]. Estuarine, Coastal and Shelf Science, 2014, 142: 4-11. doi: 10.1016/j.ecss.2014.03.001
    [117]
    Kunzmann M, Bui T H, Crockford P W, et al. Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation [J]. Geology, 2017, 45(3): 207-210. doi: 10.1130/G38602.1
    [118]
    Leavitt W D, Halevy I, Bradley A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11244-11249. doi: 10.1073/pnas.1218874110
    [119]
    Sim M S, Ono S, Donovan K, et al. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. [J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4244-4259. doi: 10.1016/j.gca.2011.05.021
    [120]
    Haeckel M, Boudreau B P, Wallmann K. Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation [J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5135-5154. doi: 10.1016/j.gca.2007.08.011
    [121]
    Druhan J L, Maher K. The influence of mixing on stable isotope ratios in porous media: A revised Rayleigh model [J]. Water Resources Research, 2017, 53(2): 1101-1124. doi: 10.1002/2016WR019666
    [122]
    Wing B A, Halevy I. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18116-18125. doi: 10.1073/pnas.1407502111
    [123]
    Wortmann U G, Chernyavsky B M. The significance of isotope specific diffusion coefficients for reaction-transport models of sulfate reduction in marine sediments [J]. Geochimica Et Cosmochimica Acta, 2011, 75(11): 3046-3056. doi: 10.1016/j.gca.2011.03.007
    [124]
    Berner R A. An idealized model of dissolved sulfate distribution in recent sediments [J]. Geochimica et Cosmochimica Acta, 1964, 28(9): 1497-1503. doi: 10.1016/0016-7037(64)90164-4
    [125]
    Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671-4692. doi: 10.1016/j.gca.2010.05.008
  • Cited by

    Periodical cited type(11)

    1. 马志颖,王洪松,袁庆政,董华洋,何腾. 烟台芝罘区北部海域表层沉积物粒度特征及其对沉积动力环境的指示作用. 海洋环境科学. 2025(01): 59-66 .
    2. 林纪江,王平,张卓,唐灵,王蕾,游大伟,聂宇华,牛建伟. 万宁日月湾近岸海域悬浮泥沙输运特征及沉积动力环境分析. 海洋湖沼通报. 2024(03): 73-81 .
    3. 王海根,顾效源,王庆同,杨鹏,宇星辰,张家浩,毛方松,葛祥威. 渤海海峡南部近百年来重金属沉积记录的环境意义. 海洋地质前沿. 2024(09): 73-83 .
    4. 王庆同,赵吉圆,王海根,杨鹏,宇星辰,张家浩,毛方松,刘金庆. 渤海海峡西南部海底沉积物重矿物组成与物源. 海洋地质前沿. 2023(06): 22-31 .
    5. 任旭光,张燕通,刘修锦,邢容容,陈文超. 滦河三角洲潟湖-沙坝岛及近岸海域表层沉积物粒度特征. 科学技术创新. 2022(13): 9-12 .
    6. 吕纪轩,胡日军,李毅,朱龙海,刘波,皇甫雪睿. 烟台北部近岸海域表层沉积物粒度分布及沉积动力环境特征. 海洋地质前沿. 2020(04): 27-36 .
    7. 皇甫雪睿,李毅,胡日军,朱龙海,刘波,尹砚军. 烟台西部近岸海域冬季悬浮泥沙浓度时空变化及其输运特征. 海洋地质前沿. 2020(05): 22-33 .
    8. 潘卫红,张帅,石显耀,王平康. 海南岛崖州湾宁远河河口区现代沉积特征. 地质与勘探. 2020(06): 1278-1286 .
    9. 刘海波,刘石磊,邵磊森. 沉积物对基准面升降的响应规律分析. 中国煤炭地质. 2020(12): 27-32 .
    10. 吴金浩,宋广军,韩家波,张玉凤,印明昊,宋伦. 渤海老铁山海域沉积物粒度分布及其对大型底栖生物群落的影响. 水产科学. 2019(05): 624-635 .
    11. 刘成,胡日军,朱龙海,袁晓东. 庙岛群岛海域沉积动力环境分区及沉积物输运趋势. 海洋地质前沿. 2018(08): 24-33 .

    Other cited types(1)

Catalog

    Article views (37) PDF downloads (9) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return