ZOU Jiaqi,DING Xuan. Changes in siliceous paleoproductivity during the early Middle Pleistocene in the Northwest Bay of Bengal [J]. Marine Geology & Quaternary Geology,2022,42(5):83-93. DOI: 10.16562/j.cnki.0256-1492.2022070301
Citation: ZOU Jiaqi,DING Xuan. Changes in siliceous paleoproductivity during the early Middle Pleistocene in the Northwest Bay of Bengal [J]. Marine Geology & Quaternary Geology,2022,42(5):83-93. DOI: 10.16562/j.cnki.0256-1492.2022070301

Changes in siliceous paleoproductivity during the early Middle Pleistocene in the Northwest Bay of Bengal

More Information
  • Received Date: July 02, 2022
  • Revised Date: August 08, 2022
  • Accepted Date: August 08, 2022
  • Available Online: October 24, 2022
  • The Northwest Bay of Bengal (BoB) is located in the core precipitation zone of the Indian Summer Monsoon (ISM), and an ideal area to study Indian monsoon activity and its impact on the environment. We reconstructed the history of siliceous productivity evolution in the study area during late Early Pleistocene to early Middle Pleistocene (920~370 ka) by analyzing biogenic silica content and sediment fluxes of cores from Site U1446 of IODP Expedition 353 in the Mahanadi Basin, Northwest BoB, and explored the mechanism of ISM precipitation and runoff activities on the paleoproductivity changes in the study area. Results indicate that siliceous productivity reflects a trend from low in the Mid-Pleistocene Transition (MPT) to high after MPT in the northwest BoB during 920~370 ka in an obvious glacial-interglacial cycle. It decreased during the glacial period and increased during the interglacial period, and the fluctuation increased after the MPT. A comparison of existing summer monsoon precipitation and runoff indicators such as δ18Osw and Rb/Ca ratio at this site reveals that siliceous productivity increased (decreased) when the ISM strengthened (weakened). It is hypothesized that the enhanced ISM led to a dramatic increase in runoff from the Indian peninsula and precipitation in the BoB, and the nutrients from rivers led to a proliferation of surface siliceous organisms and a rapid upsurge in siliceous productivity in the northwest BoB. However, the weakened ISM and the reduction of nutrients inhibited the flourishing of planktonic siliceous organisms, which then decreased the surface productivity. Spectral and wavelet analyses of biogenic silica fluxes at Site U1446 also indicate that siliceous productivity was modulated by orbital cycle variations in this study area.
  • [1]
    汪品先, 翦知湣, 赵泉鸿, 等. 南海演变与季风历史的深海证据[J]. 科学通报, 2003, 48(23):2549-2561 doi: 10.1360/03wd0156

    WANG Pinxian, JIAN Zhimin, ZHAO Quanhong, et al. Evolution of the South China Sea and monsoon history revealed in deep-sea records [J]. Chinese Science Bulletin, 2003, 48(23): 2549-2561. doi: 10.1360/03wd0156
    [2]
    Felix M. A comparison of equations commonly used to calculate organic carbon content and marine palaeoproductivity from sediment data [J]. Marine Geology, 2014, 347: 1-11. doi: 10.1016/j.margeo.2013.10.006
    [3]
    Xu Y H, Wang L, Lai Z K, et al. The biogenic silica variation and paleoproductivity evolution in the eastern Indian Ocean during the past 20 0000 a [J]. Acta Oceanologica Sinica, 2019, 38(1): 78-84. doi: 10.1007/s13131-019-1372-z
    [4]
    Nelson D M, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation [J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372. doi: 10.1029/95GB01070
    [5]
    Madhupratap M, Gauns M, Ramaiah N, et al. Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001 [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(5): 881-896. doi: 10.1016/S0967-0645(02)00611-2
    [6]
    Cortese G, Gersonde R, Hillenbrand C D, et al. Opal sedimentation shifts in the World Ocean over the last 15 Myr [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 509-527. doi: 10.1016/j.jpgl.2004.05.035
    [7]
    Volk T, Hoffert M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]//Sundquist E T, Broecker W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington: American Geophysical Union, 1985: 99-110.
    [8]
    Prasanna Kumar S, Nuncio M, Ramaiah N, et al. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2007, 54(9): 1619-1640. doi: 10.1016/j.dsr.2007.06.002
    [9]
    Phillips S C, Johnson J E, Giosan L, et al. Monsoon-influenced variation in productivity and lithogenic sediment flux since 110 ka in the offshore Mahanadi Basin, northern Bay of Bengal [J]. Marine and Petroleum Geology, 2014, 58: 502-525. doi: 10.1016/j.marpetgeo.2014.05.007
    [10]
    Prasanna Kumar S, Muraleedharan P M, Prasad T G, et al. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? [J]. Geophysical Research Letters, 2002, 29(24): 2235.
    [11]
    Lee J, Kim S, Khim B K. A paleoproductivity shift in the northwestern Bay of Bengal (IODP Site U1445) across the Mid-Pleistocene transition in response to weakening of the Indian summer monsoon [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110018. doi: 10.1016/j.palaeo.2020.110018
    [12]
    Ota Y, Kuroda J, Yamaguchi A, et al. Monsoon-influenced variations in plankton community structure and upper-water column stratification in the western Bay of Bengal during the past 80 ky [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 521: 138-150. doi: 10.1016/j.palaeo.2019.02.020
    [13]
    Clark P U, Archer D, Pollard D, et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 [J]. Quaternary Science Reviews, 2006, 25(23-24): 3150-3184. doi: 10.1016/j.quascirev.2006.07.008
    [14]
    LaFond E C. Bay of Bengal[M]//Fairbridge R W. The Encyclopedia of Oceanography. New York: Van Nostrand Reinhold Co. , 1966: 110-118.
    [15]
    Curray J R, Emmel F J, Moore D G, et al. Structure, tectonics, and geological history of the northeastern Indian ocean[M]//Nairn A E M, Stehli F G. The Ocean Basins and Margins: The Indian Ocean. New York: Springer, 1982: 399-450.
    [16]
    Subrahmanyam V, Subrahmanyam A S, Murty G P S, et al. Morphology and tectonics of Mahanadi Basin, northeastern continental margin of India from geophysical studies [J]. Marine Geology, 2008, 253(1-2): 63-72. doi: 10.1016/j.margeo.2008.04.007
    [17]
    Chatterjee A, Shankar D, Shenoi S S C, et al. A new atlas of temperature and salinity for the North Indian Ocean [J]. Journal of Earth System Science, 2012, 121(3): 559-593. doi: 10.1007/s12040-012-0191-9
    [18]
    Boyer T P, Antonov J I, Baranova O K, et al. World ocean database 2013[R]. Silver Spring: National Oceanographic Data Center Ocean Climate Laboratory, 2013.
    [19]
    Da Silva R, Mazumdar A, Mapder T, et al. Salinity stratification controlled productivity variation over 300 ky in the Bay of Bengal [J]. Scientific Reports, 2017, 7(1): 14439. doi: 10.1038/s41598-017-14781-3
    [20]
    Varkey M J, Murty V S N, Suryanarayana A. Physical oceanography of the bay of Bengal and Andaman sea [J]. Oceanography and Marine Biology:An Annual Review, 1996, 34: 1-70.
    [21]
    Miranda J, Baliarsingh S K, Lotliker A A, et al. Long-term trend and environmental determinants of phytoplankton biomass in coastal waters of northwestern Bay of Bengal [J]. Environmental Monitoring and Assessment, 2020, 192(1): 55. doi: 10.1007/s10661-019-8033-8
    [22]
    Shankar D, McCreary J P, Han W, et al. Dynamics of the East India Coastal Current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds [J]. Journal of Geophysical Research:Oceans, 1996, 101(C6): 13975-13991. doi: 10.1029/96JC00559
    [23]
    Shetye S R, Shenoi S S C, Gouveia A D, et al. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon [J]. Continental Shelf Research, 1991, 11(11): 1397-1408. doi: 10.1016/0278-4343(91)90042-5
    [24]
    Clemens S C, Kuhnt W, LeVay L J, et al. Indian monsoon rainfall[C]//Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2016: 1-15.
    [25]
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7
    [26]
    Wang D, Ding X, Bassinot F. Observations of contrasted glacial-interglacial dissolution of foraminifera above the lysocline in the Bay of Bengal, northeastern Indian Ocean [J]. Acta Oceanologica Sinica, 2021, 40(1): 155-161. doi: 10.1007/s13131-021-1821-3
    [27]
    Clemens S C, Yamamoto M, Thirumalai K, et al. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions [J]. Science Advances, 2021, 7(23): eabg3848. doi: 10.1126/sciadv.abg3848
    [28]
    Lisiecki L E, Raymo M E. A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.
    [29]
    王汝建, 肖文申, 向霏, 等. 北冰洋西部表层沉积物中生源组分及其古海洋学意义[J]. 海洋地质与第四纪地质, 2007, 27(6):61-69

    WANG Rujian, XIAO Wenshen, XIANG Fei, et al. Distribution pattern of biogenic components in surface sediments of the western arctic ocean and their paleoceanographic implications [J]. Marine Geology & Quaternary Geology, 2007, 27(6): 61-69.
    [30]
    Berger W H. Biogenous deep sea sediments: production, preservation and interpretation[M]//Riley J P, Chester R. Treatise on Chemical Oceanography 5. San Diego, California: Academic, 1976: 265-388.
    [31]
    Ragueneau O, Tréguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy [J]. Global and Planetary Change, 2000, 26(4): 317-365. doi: 10.1016/S0921-8181(00)00052-7
    [32]
    同济大学海洋地质系. 古海洋学概论[M]. 上海: 同济大学出版社, 1989: 1-316

    Department of Marine Geology, Tongji University. Introduction to Paleoceanography[M]. Shanghai: Tongji University Press, 1989: 1-316.
    [33]
    Liu S F, Zhang H, Cao P, et al. Paleoproductivity evolution in the northeastern Indian Ocean since the last glacial maximum: evidence from biogenic silica variations [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2021, 175: 103591. doi: 10.1016/j.dsr.2021.103591
    [34]
    Achyuthan H, Deshpande R D, Rao M S, et al. Stable isotopes and salinity in the surface waters of the Bay of Bengal: implications for water dynamics and palaeoclimate [J]. Marine Chemistry, 2013, 149: 51-62. doi: 10.1016/j.marchem.2012.12.006
    [35]
    Paul J T, Ramaiah N, Sardessai S. Nutrient regimes and their effect on distribution of phytoplankton in the Bay of Bengal [J]. Marine Environmental Research, 2008, 66(3): 337-344. doi: 10.1016/j.marenvres.2008.05.007
    [36]
    Chakrapani G J, Subramanian V. Factors controlling sediment discharge in the Mahanadi River basin, India [J]. Journal of Hydrology, 1990, 117(1-4): 169-185. doi: 10.1016/0022-1694(90)90091-B
    [37]
    Georg R B, West A J, Basu A R, et al. Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget [J]. Earth and Planetary Science Letters, 2009, 283(1-4): 67-74. doi: 10.1016/j.jpgl.2009.03.041
    [38]
    Laruelle G G, Roubeix V, Sferratore A, et al. Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land–ocean transition [J]. Global Biogeochemical Cycles, 2009, 23(4): GB4031.
    [39]
    Datta D K, Gupta L P, Subramanian V. Distribution of C, N and P in the sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin [J]. Organic Geochemistry, 1999, 30(1): 75-82. doi: 10.1016/S0146-6380(98)00203-4
    [40]
    Sarma V V S S, Rao G D, Viswanadham R, et al. Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal [J]. Oceanography, 2016, 29(2): 222-231. doi: 10.5670/oceanog.2016.54
    [41]
    Short D A, Mengel J G, Crowley T J, et al. Filtering of milankovitch cycles by earth's geography [J]. Quaternary Research, 1991, 35(2): 157-173. doi: 10.1016/0033-5894(91)90064-C
    [42]
    Wang P X, Tian J, Lourens L J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records [J]. Earth and Planetary Science Letters, 2010, 290(3-4): 319-330. doi: 10.1016/j.jpgl.2009.12.028
    [43]
    Araya-Melo P A, Crucifix M, Bounceur N. Global sensitivity analysis of the Indian monsoon during the Pleistocene [J]. Climate of the Past, 2015, 11(1): 45-61. doi: 10.5194/cp-11-45-2015
    [44]
    Erb M P, Jackson C S, Broccoli A J. Using single-forcing GCM simulations to reconstruct and interpret Quaternary climate change [J]. Journal of Climate, 2015, 28(24): 9746-9767. doi: 10.1175/JCLI-D-15-0329.1
    [45]
    Kim S, Takahashi K, Khim B K, et al. Biogenic opal production changes during the Mid-Pleistocene Transition in the Bering Sea (IODP Expedition 323 Site U1343) [J]. Quaternary Research, 2014, 81(1): 151-157. doi: 10.1016/j.yqres.2013.10.001
    [46]
    Iwasaki S, Takahashi K, Kanematsu Y, et al. Paleoproductivity and paleoceanography of the last 4.3 Myrs at IODP Expedition 323 Site U1341 in the Bering Sea based on biogenic opal content [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 125-126: 145-154. doi: 10.1016/j.dsr2.2015.04.005
    [47]
    Berger A. Orbital variations and insolation database[R]. Boulder CO, USA: National Oceanic and Atmospheric Administration, 1992.
  • Related Articles

    [1]CHEN Shanshan, WANG Zhongbo, LU Kai, QI Jianghao, ZHAO Zhao, ZHANG Zhixun. Sedimentary stratigraphic framework and palaeoenvironmental evolution of the northern outer shelf of East China Sea since MIS 6[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 124-137. DOI: 10.16562/j.cnki.0256-1492.2019052901
    [2]SUN Jing, YANG Changqing, XU Liming, WANG Jianqiang. Paleo-environment of the Late Triassic-Early Jurassic in the land area next to the southern East China Sea Shelf[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 81-92. DOI: 10.16562/j.cnki.0256-1492.2019072501
    [3]YANG Yanqiu, YANG Changqing, YANG Chuansheng, SUN Jing. Mesozoic fault system in the Southern East China Sea Shelf Basin and its bearing on basin structures[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 52-61. DOI: 10.16562/j.cnki.0256-1492.2019080501
    [4]YANG Changqing, YANG Yanqiu, YANG Chuansheng, SUN Jing, WANG Jianqiang, XIAO Guolin, WANG Jiao, WANG Mingjian. Tectono-sedimentary evolution of the Mesozoic in the southern East China Sea Shelf Basin and its bearing on petroleum exploration[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 30-40. DOI: 10.16562/j.cnki.0256-1492.2019070305
    [5]RAN Weimin, LUAN Xiwu, SHAO Zhufu, LIU Hong, LI Deyong, ZHAO Yang, WANG Huidong, YAN Zhonghui. Research on characteristics of growth faults in the southern East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 100-112. DOI: 10.16562/j.cnki.0256-1492.2017052501
    [6]CUI Xing, WANG Liangliang, LUO Hongming, HUANG Xiaochun, LI Tinghui, YANG Chuansheng, DAI Liming, GUO Lingli, MA Fangfang, LIU Ze. SANDBOX MODELING TEST FOR MESOZOIC BASINS IN SOUTHERN EAST CHINA SEA SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 181-192. DOI: 10.16562/j.cnki.0256-1492.2017.04.012
    [7]WANG Wenjuan, LI Gang, YANG Changqing, YANG Chuansheng. CHARACTRISTICS OF SESMIC SEQUENCES IN THE EAST CHINA SEA SHELF BASIN AND THEIR GEOLOGICAL ATTRIBUTES[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 117-122. DOI: 10.3724/SP.J.1140.2013.03117
    [8]YANG Yanqiu, YANG Changqing, LI Gang, GONG Jianming. STRUCTURAL STYLES AND THEIR DISTRIBUTION PATTERN IN THE SOUTHERN EAST CHINA SEA SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 113-118. DOI: 10.3724/SP.J.1140.2012.03113
    [9]YANG Changqing, YANG Chuansheng, LI Gang, LIAO Jing, GONG Jianming. MESOZOIC TECTONIC EVOLUTION AND PROTOTYPE BASIN CHARACTERS IN THE SOUTHERN EAST CHINA SEA SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 105-111. DOI: 10.3724/SP.J.1140.2012.03105
    [10]GONG Chenglin, WANG Yingmin, CUI Gang, LANG Shumin, GUAN Baocong, ZHOU Xinghai. TECTONIC EVOLUTION AND SEQUENCE STRATIGRAPHY OF PASSIVE CONTINENTAL MARGIN DEEP-WATER BASIN (NORTH BONAPARTE BASIN)[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 103-109. DOI: 10.3724/SP.J.1140.2010.02103

Catalog

    Article views (873) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return