Citation: | JI Shunchuan,WEN Jingya,MA Long,et al. Miocene soil respiration history in Longzhong Basin and its response to East Asian summer monsoon[J]. Marine Geology & Quaternary Geology,2022,42(6):185-192. DOI: 10.16562/j.cnki.0256-1492.2022061001 |
[1] |
Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36. doi: 10.1029/94GB02723
|
[2] |
Zhao Z Y, Peng C H, Yang Q, et al. Model prediction of biome-specific global soil respiration from 1960 to 2012 [J]. Earth's Future, 2017, 5(7): 715-729. doi: 10.1002/2016EF000480
|
[3] |
Carey J C, Tang J W, Templer P H, et al. Temperature response of soil respiration largely unaltered with experimental warming [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13797-13802. doi: 10.1073/pnas.1605365113
|
[4] |
Jian J S, Steele M K, Day S D, et al. Future global soil respiration rates will swell despite regional decreases in temperature sensitivity caused by rising temperature [J]. Earth’s Future, 2018, 6(11): 1539-1554. doi: 10.1029/2018EF000937
|
[5] |
Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate [J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240. doi: 10.1016/0012-821X(84)90089-X
|
[6] |
刘强, 刘嘉麒, 刘东生. 北京斋堂黄土剖面主要温室气体组分初步研究[J]. 地质地球化学, 2000, 28(2):82-86 doi: 10.3969/j.issn.1672-9250.2000.02.013
LIU Qiang, LIU Jiaqi, LIU Dongsheng. Primary research on major greenhouse gases in Zhaitang loess section, Beijing [J]. Geology-Geochemistry, 2000, 28(2): 82-86. doi: 10.3969/j.issn.1672-9250.2000.02.013
|
[7] |
刘嘉麒, 钟华, 刘东生. 渭南黄土中温室气体组分的初步研究[J]. 科学通报, 1997, 42(11):921-924 doi: 10.1007/BF02882548
LIU Jiaqi, ZHONG Hua, LIU Dongsheng. Preliminary study of greenhouse gases in loess in Weinan, Shaanxi province [J]. Chinese Science Bulletin, 1997, 42(11): 921-924. doi: 10.1007/BF02882548
|
[8] |
刘强, 刘嘉麒, 隋淑珍. 山西黄土中主要温室气体组分特征[J]. 科学通报, 2001, 46(17):1469-1471 doi: 10.3321/j.issn:0023-074X.2001.08.014
LIU Qiang, LIU Jiaqi, SUI Shuzhen. Features of major greenhouse gases in loess, Shanxi Province, China [J]. Chinese Science Bulletin, 2001, 46(17): 1469-1471. doi: 10.3321/j.issn:0023-074X.2001.08.014
|
[9] |
李艳花, 赵景波. 西安南郊不同人工植被下土壤CO2浓度研究[J]. 中国沙漠, 2006, 26(6):910-914 doi: 10.3321/j.issn:1000-694X.2006.06.008
LI Yanhua, ZHAO Jingbo. Soil CO2 Concentration under different artificial vegetations in South Suburb of Xi’an [J]. Journal of Desert Research, 2006, 26(6): 910-914. doi: 10.3321/j.issn:1000-694X.2006.06.008
|
[10] |
宋超, 韩贵琳, 宁卓, 等. 黄土塬区包气带土壤CO2的特征及成因[J]. 第四纪研究, 2017, 37(6):1172-1181 doi: 10.11928/j.issn.1001-7410.2017.06.02
SONG Chao, HAN Guilin, NING Zhuo, et al. The characteristics and origin of CO2 in unsaturated zone at loess tableland of Northwestern China [J]. Quaternary Sciences, 2017, 37(6): 1172-1181. doi: 10.11928/j.issn.1001-7410.2017.06.02
|
[11] |
Huth T E, Cerling T E, Marchetti D W, et al. Seasonal bias in soil carbonate Formation and its implications for interpreting high-resolution paleoarchives: evidence from southern Utah [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(3): 616-632. doi: 10.1029/2018JG004496
|
[12] |
Ji S C, Ma L, Nie J S, et al. Quantifying soil-respired CO2 on the Chinese Loess Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110158. doi: 10.1016/j.palaeo.2020.110158
|
[13] |
Da J W, Zhang Y G, Li G, et al. Aridity-driven decoupling of δ13C between pedogenic carbonate and soil organic matter [J]. Geology, 2020, 48(10): 981-985. doi: 10.1130/G47241.1
|
[14] |
Da J W, Zhang Y G, Li G, et al. Low CO2 levels of the entire Pleistocene Epoch [J]. Nature Communications, 2019, 10(1): 4342. doi: 10.1038/s41467-019-12357-5
|
[15] |
Gulbranson E L, Tabor N J, Montañez I P. A pedogenic goethite record of soil CO2 variations as a response to soil moisture content [J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7099-7116. doi: 10.1016/j.gca.2011.09.026
|
[16] |
Caves Rugenstein J K, Chamberlain C P. The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective [J]. Earth-Science Reviews, 2018, 185: 1129-1156. doi: 10.1016/j.earscirev.2018.09.003
|
[17] |
Licht A, Dupont-Nivet G, Meijer N, et al. Decline of soil respiration in northeastern Tibet through the transition into the Oligocene icehouse [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110016. doi: 10.1016/j.palaeo.2020.110016
|
[18] |
Hao Q Z, Guo Z T. Magnetostratigraphy of a Late Miocene-Pliocene loess-soil sequence in the western Loess Plateau in China [J]. Geophysical Research Letters, 2004, 31(9): L09209. doi: 10.1029/2003GL019392
|
[19] |
Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China [J]. Nature, 2002, 416(6877): 159-163. doi: 10.1038/416159a
|
[20] |
Hao Q Z, Guo Z T. Magnetostratigraphy of an early-Middle Miocene loess-soil sequence in the western Loess Plateau of China [J]. Geophysical Research Letters, 2007, 34(18): L18305. doi: 10.1029/2007gl031162
|
[21] |
Qiang X K, An Z S, Song Y G, et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago [J]. Science China Earth Science, 2011, 54(1): 136-144. doi: 10.1007/s11430-010-4126-5
|
[22] |
马龙. 黄土高原风尘沉积中钙结核的形态学和地球化学研究[D]. 中国科学院大学博士学位论文, 2017
MA Long. Morphological and geochemical characteristics of carbonate nodules in Aeolian deposits on Chinese loess Plateau[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2017.
|
[23] |
Cerling T E. Stable carbon isotopes in palaeosol carbonates[M]//Thiry M, Simon-Coinçon R. Palaeoweathering, Palaeosurfaces and Related Continental Deposits. Oxford: The International Association of Sedimentologists, 2000: 43-60.
|
[24] |
Torn M S, Lapenis A G, Timofeev A, et al. Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe [J]. Global Change Biology, 2002, 8(10): 941-953. doi: 10.1046/j.1365-2486.2002.00477.x
|
[25] |
Breecker D O, Sharp Z D, McFadden L D. Seasonal bias in the Formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA [J]. GSA Bulletin, 2009, 121(3-4): 630-640. doi: 10.1130/B26413.1
|
[26] |
Wang K X, Lu H Y, Garzione C N, et al. Enhanced soil respiration, vegetation and monsoon precipitation at Lantian, East Asia during Pliocene warmth[J]. Climate Dynamics, 2022,doi: 10.1007/s00382-022-06243-y.
|
[27] |
Tipple B J, Meyers S R, Pagani M. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies [J]. Paleoceanography, 2010, 25(3): PA3202. doi: 10.1029/PA001851
|
[28] |
Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate [J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 419-430. doi: 10.1016/0016-7037(92)90142-6
|
[29] |
Cerling T E, Quade J. Stable carbon and oxygen isotopes in soil carbonates[M]//Swart P K, Lohmann K C, Mckenzie J, et al. Climate Change in Continental Isotopic Records. Washington, DC: American Geophysical Union (AGU), 1993, 78: 217-231.
|
[30] |
Caves J K, Moragne D Y, Ibarra D E, et al. The Neogene de-greening of Central Asia [J]. Geology, 2016, 44(11): 887-890. doi: 10.1130/G38267.1
|
[31] |
达佳伟. 基于黄土高原成壤碳酸盐的古大气二氧化碳浓度定量重建研究[D]. 南京大学博士学位论文, 2020.
DA Jiawei. Quantitative reconstruction of paleoatmospheric CO2 levels using pedogenic carbonates from the Chinese Loess Plateau[D]. Doctor Dissertation of Nanjing University, 2020.
|
[32] |
Breecker D O, Sharp Z, McFadden L. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for AD 2100 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 576-580. doi: 10.1073/pnas.0902323106
|
[33] |
Cui Y, Schubert B A, Jahren A H. A 23 Ma record of low atmospheric CO2 [J]. Geology, 2020, 48(9): 888-892. doi: 10.1130/G47681.1
|
[34] |
Cerling T E. Development of grasslands and savannas in East Africa during the Neogene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 97(3): 241-247. doi: 10.1016/0031-0182(92)90211-M
|
[35] |
Ekart D D, Cerling T E, Montanez I P, et al. A 400 million year carbon isotope record of pedogenic carbonate; implications for paleoatomospheric carbon dioxide [J]. American Journal of Science, 1999, 299(10): 805-827. doi: 10.2475/ajs.299.10.805
|
[36] |
Caldwell M M, White R S, Moore R T, et al. Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species [J]. Oecologia, 1977, 29(4): 275-300. doi: 10.1007/BF00345803
|
[37] |
De Jong E. Soil aeration as affected by slope position and vegetative cover [J]. Soil Science, 1981, 131(1): 34-43. doi: 10.1097/00010694-198101000-00006
|
[38] |
Quade J, Eiler J, Daëron M, et al. The clumped isotope geothermometer in soil and paleosol carbonate [J]. Geochimica et Cosmochimica Acta, 2013, 105: 92-107. doi: 10.1016/j.gca.2012.11.031
|
[39] |
Yang S L, Ding Z L, Li Y Y, et al. Warming-induced northwestward migration of the east Asian monsoon rain belt from the last glacial maximum to the mid-Holocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13178-13183. doi: 10.1073/pnas.1504688112
|
[40] |
Hough B G, Fan M J, Passey B H. Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction [J]. Earth and Planetary Science Letters, 2014, 391: 110-120. doi: 10.1016/j.jpgl.2014.01.008
|
[41] |
Schubert B A, Jahren A H. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants [J]. Geochimica et Cosmochimica Acta, 2012, 96: 29-43. doi: 10.1016/j.gca.2012.08.003
|
[42] |
Schubert B A, Jahren A H. Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by increase in atmospheric pCO2 [J]. Geology, 2015, 43(5): 435-438. doi: 10.1130/G36467.1
|
[43] |
Ji S C, Nie J S, Lechler A, et al. A symmetrical CO2 peak and asymmetrical climate change during the Middle Miocene [J]. Earth and Planetary Science Letters, 2018, 499: 134-144. doi: 10.1016/j.jpgl.2018.07.011
|
[44] |
Luo Y Q, Zhou X H. Soil Respiration and the Environment[M]. Oxford: Academic Press, 2010.
|
[45] |
Bond-Lamberty B, Thomson A. A global database of soil respiration data [J]. Biogeosciences, 2010, 7(6): 1915-1926. doi: 10.5194/bg-7-1915-2010
|
[46] |
Hui Z C, Li J J, Xu Q H, et al. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3-4): 373-382. doi: 10.1016/j.palaeo.2011.05.043
|
[47] |
Song Y G, Wang Q S, An Z S, et al. Mid-Miocene climatic optimum: Clay mineral evidence from the red clay succession, Longzhong Basin, Northern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512: 46-55. doi: 10.1016/j.palaeo.2017.10.001
|
[48] |
Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies [J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002
|