HUANG Wei,HU Bangqi,SONG Weiyu,et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology,2022,42(5):137-148. DOI: 10.16562/j.cnki.0256-1492.2022052401
Citation: HUANG Wei,HU Bangqi,SONG Weiyu,et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology,2022,42(5):137-148. DOI: 10.16562/j.cnki.0256-1492.2022052401

Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge

More Information
  • Received Date: May 23, 2022
  • Revised Date: June 27, 2022
  • Accepted Date: June 27, 2022
  • Available Online: October 24, 2022
  • Ferromanganese crusts are highly enriched in a wide variety of critical metals including Co, Cu, Mn, Ni, Ti, V, REE, Y, and Zn. Study of their enrichment in the crusts and the geological constraints is important for future development and utilization of them at seafloor. Recently, ferromanganese crust samples were acquired from 13°20′N seamount of the southern Kyushu-Palau Ridge, and analyzed in mineralogy and element geochemistry, as well as for electron probe microanalysis. Results show that the mineralogical and chemical composition of the samples are relatively uniform, and the crusts have not suffered from obvious phosphatization, which indicates that the crusts are characterized by one hydrogenetic crustal layer. Critical metals with high content such as Co and Ni are mainly enriched in vernadite. Co mainly exists in the lattice of vernadite due mainly to surface oxidation of vernadite. Ni is enriched in the crusts by replacing and occupying lattice vacancies of Mn as Co does, and a large amount of Ni exists in the form of adsorption. Ti, V, and REY are enriched in the iron oxyhydroxide components dominated by feroxyhyte by surface complexation, crystal lattice entry, and co-precipitation. Cu and Zn are lack of crystal lattice entry ability; the Cu content in seawater is very low and the adsorption of Zn is weak, thus resulting in their dispersed distribution and low content in the samples. This study reveals that the crusts started growing in the late Miocene and show no obvious growth break; the accumulated enrichment degree of critical metals in these samples is lower than that in the highest potential areas of the global ocean due to insufficient continuous growth time. However, the ideal water depth conditions, low deposition rate, stable tectonic environment, suitable water depth distribution of the oxygen minimum zone, and long distance from macroscale input of the non-metallogenic material into the study area are favorable for continuous growth and enrichment of critical metals in these crusts in the future.
  • [1]
    Hein J R, Koschinsky A. 13. 11 - Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 273-291.
    [2]
    Petersen S, Krätschell A, Augustin N, et al. News from the seabed – geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012
    [3]
    Halbach P E, Jahn A, Cherkashov G. Marine Co-Rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer, 2017: 65-141.
    [4]
    Li Y H, Schoonmaker J E. 9.1 - Chemical composition and mineralogy of marine sediments [M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 1-32.
    [5]
    White W M, Klein E M. 4.13 - Composition of the oceanic crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 457-496.
    [6]
    Mizell K, Hein J R, Au M, et al. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean based on regional variations and genetic types of nodules [M]//Sharma R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management. Cham: Springer, 2022: 53-80.
    [7]
    李三忠, 赵淑娟, 索艳慧, 等. 区域海底构造-上册[M]. 北京: 科学出版社, 2021.

    LI Sanzhong, ZHAO Shujian, SUO Yanhui, et al. Regional Submarine Tectonics-Volume One[M]. Beijing: Science Press, 2021.
    [8]
    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.
    [9]
    张洁, 李家彪, 丁巍伟. 九州-帕劳海脊地壳结构及其形成演化的研究综述[J]. 海洋科学进展, 2012, 30(4):595-607 doi: 10.3969/j.issn.1671-6647.2012.04.016

    ZHANG Jie, LI Jiabiao, DING Weiwei. Reviews of the study on crustal structure and evolution of the Kyushu-Palau ridge [J]. Advances in Marine Science, 2012, 30(4): 595-607. doi: 10.3969/j.issn.1671-6647.2012.04.016
    [10]
    Yamazaki T, Takahashi M, Iryu Y, et al. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores [J]. Earth, Planets and Space, 2010, 62(6): 495-502. doi: 10.5047/eps.2010.04.001
    [11]
    Party Shipboard Scientific. Initial reports of the deep sea drilling project leg 59. Part I: introduction, site reports, 2, site 447: east side of the West Philippine Basin[R]. 1981.
    [12]
    何良彪. 马里亚纳海脊-西菲律宾海盆铁锰结核的地球化学[J]. 科学通报, 1991, 36(14):1190-1193

    HE Liangbiao. Geochemical characteristics of Fe-Mn nodules and crusts from the Mariana ridge and the West Philippine Basin [J]. Chinese Science Bulletin, 1991, 36(14): 1190-1193.
    [13]
    陈穗田, Stüben D. 菲律宾海的锰结壳和锰结核[J]. 海洋学报, 1997, 19(4):109-116

    CHEN Suitian, Stüben D. Manganese crusts and nodules in the Philippine Sea [J]. Acta Oceanologica Sinica, 1997, 19(4): 109-116.
    [14]
    徐兆凯, 李安春, 于心科, 等. 东菲律宾海新型铁锰结壳中元素的赋存状态[J]. 地球科学—中国地质大学学报, 2008, 33(3):329-336 doi: 10.3799/dqkx.2008.043

    XU Zhaokai, LI Anchun, YU Xinke, et al. Elemental occurrence phases of the new-type ferromanganese crusts from the east Philippine Sea [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(3): 329-336. doi: 10.3799/dqkx.2008.043
    [15]
    Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean [J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x
    [16]
    Wegorzewski A V, Kuhn T. The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean [J]. Marine Geology, 2014, 357: 123-138. doi: 10.1016/j.margeo.2014.07.004
    [17]
    Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142: 16-33. doi: 10.1016/j.dsr.2018.09.008
    [18]
    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004
    [19]
    Josso P, Lusty P, Chenery S, et al. Controls on metal enrichment in ferromanganese crusts: Temporal changes in oceanic metal flux or phosphatisation? [J]. Geochimica et Cosmochimica Acta, 2021, 308: 60-74. doi: 10.1016/j.gca.2021.06.002
    [20]
    McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
    [21]
    Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1
    [22]
    Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1
    [23]
    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003
    [24]
    Bonatti E, Kraemer T F, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. New York: Arden House, 1972.
    [25]
    黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1):199-209 doi: 10.16562/j.cnki.0256-1492.2020101501

    HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501
    [26]
    Peacock C L, Sherman D M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy [J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1723-1733. doi: 10.1016/j.gca.2003.10.018
    [27]
    Millero F J, Woosley R, Ditrolio B, et al. Effect of ocean acidification on the speciation of metals in seawater [J]. Oceanography, 2009, 22(4): 72-85. doi: 10.5670/oceanog.2009.98
    [28]
    GEOTRACES Intermediate Data Product Group. The GEOTRACES intermediate data product 2021 (IDP2021). NERC EDS British Oceanographic Data Centre NOC, 2021.
    [29]
    Bruland K W, Middag R, Lohan M C. 8.2 - controls of trace metals in seawater[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 19-51.
    [30]
    Gong G C, Liu K K, Liu C T, et al. The chemical hydrography of the South China Sea West of Luzon and a comparison with the West Philippine Sea [J]. Terrestrial, Atmospheric and Oceanic Sciences, 1992, 3(4): 587-602. doi: 10.3319/TAO.1992.3.4.587(O)
    [31]
    Behrens M K, Pahnke K, Schnetger B, et al. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific [J]. Geochimica et Cosmochimica Acta, 2018, 222: 508-534. doi: 10.1016/j.gca.2017.11.008
    [32]
    Manceau A, Drits V A, Silvester E, et al. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite [J]. American Mineralogist, 1997, 82(11-12): 1150-1175. doi: 10.2138/am-1997-11-1213
    [33]
    Manceau A, Lanson M, Takahashi Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule [J]. American Mineralogist, 2014, 99(10): 2068-2083. doi: 10.2138/am-2014-4742
    [34]
    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 23-63.
    [35]
    Nozaki Y. A fresh look at element distribution in the North Pacific Ocean [J]. Eos, Transactions American Geophysical Union, 1997, 78(21): 221-221.
    [36]
    Hens T, Brugger J, Etschmann B, et al. Nickel exchange between aqueous Ni(II) and deep-sea ferromanganese nodules and crusts [J]. Chemical Geology, 2019, 528: 119276. doi: 10.1016/j.chemgeo.2019.119276
    [37]
    Peacock C L. Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates [J]. Geochimica et Cosmochimica Acta, 2009, 73(12): 3568-3578. doi: 10.1016/j.gca.2009.03.020
    [38]
    Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules [J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378
    [39]
    Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments [J]. Geochimica et Cosmochimica Acta, 2020, 282: 19-37. doi: 10.1016/j.gca.2020.04.012
    [40]
    Sherman D M, Peacock C L. Surface complexation of Cu on birnessite (δ-MnO2): Controls on Cu in the deep ocean [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6721-6730. doi: 10.1016/j.gca.2010.08.042
    [41]
    Little S H, Sherman D M, Vance D, et al. Molecular controls on Cu and Zn isotopic fractionation in Fe–Mn crusts [J]. Earth and Planetary Science Letters, 2014, 396: 213-222. doi: 10.1016/j.jpgl.2014.04.021
    [42]
    Yang P, Post J E, Wang Q, et al. Metal adsorption controls stability of layered manganese oxides [J]. Environmental Science & Technology, 2019, 53(13): 7453-7462.
    [43]
    Grangeon S, Manceau A, Guilhermet J, et al. Zn sorption modifies dynamically the layer and interlayer structure of vernadite [J]. Geochimica et Cosmochimica Acta, 2012, 85: 302-313. doi: 10.1016/j.gca.2012.02.019
    [44]
    Hinkle M A G, Dye K G, Catalano J G. Impact of Mn(II)-manganese oxide reactions on Ni and Zn speciation [J]. Environmental Science & Technology, 2017, 51(6): 3187-3196.
    [45]
    Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.
    [46]
    Wu F, Owens J D, Tang L M, et al. Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules [J]. Geochimica et Cosmochimica Acta, 2019, 265: 371-385. doi: 10.1016/j.gca.2019.09.007
    [47]
    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4
    [48]
    Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect [J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9
    [49]
    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045
    [50]
    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005
    [51]
    Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005
    [52]
    Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4
    [53]
    Josso P, Parkinson I, Horstwood M, et al. Improving confidence in ferromanganese crust age models: A composite geochemical approach [J]. Chemical Geology, 2019, 513: 108-119. doi: 10.1016/j.chemgeo.2019.03.003
    [54]
    Puteanus D, Halbach P. Correlation of Co concentration and growth rate — A method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3
    [55]
    Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0
    [56]
    Mcmurtry G M, Vonderhaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7
    [57]
    Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 3771-3800. doi: 10.1002/2017GC007186
    [58]
    Dutkiewicz A, Müller R D, Wang X, et al. Predicting sediment thickness on vanished ocean crust since 200 Ma [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4586-4603. doi: 10.1002/2017GC007258

Catalog

    Article views (935) PDF downloads (83) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return