Citation: | YANG Yingxue,LI Li,YU Jinyong,et al. Progresses in the study of organic lipid molecules for reconstruction of paleo-sea temperature[J]. Marine Geology & Quaternary Geology,2022,42(6):131-149. DOI: 10.16562/j.cnki.0256-1492.2022042901 |
[1] |
Elderfield H E, Ganssen G M. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios [J]. Nature, 2000, 405(6785): 442-445. doi: 10.1038/35013033
|
[2] |
Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera [J]. Geochimica et Cosmochimica Acta, 1983, 47(6): 1025-1031. doi: 10.1016/0016-7037(83)90232-6
|
[3] |
Spero H J, Bijma J, Lea D W, et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes [J]. Nature, 1997, 390(6659): 497-500. doi: 10.1038/37333
|
[4] |
Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1–2): 1–16.
|
[5] |
Rechka J A, Maxwell J R. Characterisation of alkenone temperature indicators in sediments and organisms[J]. Organic Geochemistry, 1988, 13(4–6): 727–734.
|
[6] |
Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment [J]. Nature, 1987, 330(6146): 367-369. doi: 10.1038/330367a0
|
[7] |
Boon J J, Leeuw J W, Burlingame A L B. Organic geochemistry of Walvis Bay diatomaceous ooze-III. Structural analysis of the monoenoic and polycyclic fatty acids [J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 631-644. doi: 10.1016/0016-7037(78)90008-X
|
[8] |
邢磊, 杨欣欣, 肖睿. 长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49(10):79-87 doi: 10.16441/j.cnki.hdxb.20190247
XING Lei, YANG Xinxin, XIAO Rui. Progress of compositions and indications of long-chain alkenones [J]. Periodical of Ocean University of China, 2019, 49(10): 79-87. doi: 10.16441/j.cnki.hdxb.20190247
|
[9] |
马晓旭, 刘传联, 金晓波, 等. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3):265-274 doi: 10.11867/j.issn.1001-8166.2019.03.0265
MA Xiaoxu, LIU Chuanlian, JIN Xiaobo, et al. The application of alkenone-based pCO2 reconstructions [J]. Advances in Earth Science, 2019, 34(3): 265-274. doi: 10.11867/j.issn.1001-8166.2019.03.0265
|
[10] |
Theroux S, D'Andrea W J, Toney J, et al. Phylogenetic diversity and evolutionary relatedness of alkenone-producing haptophyte algae in lakes: Implications for continental paleotemperature reconstructions[J]. Earth and Planetary Science Letters, 2010, 300(3–4): 311–320.
|
[11] |
Salacup J M, Farmer J R, Herbert T D, et al. Alkenone Paleothermometry in Coastal Settings: Evaluating the Potential for Highly Resolved Time Series of Sea Surface Temperature [J]. Paleoceanography and Paleoclimatology, 2019, 34(2): 164-181. doi: 10.1029/2018PA003416
|
[12] |
Longo W M, Huang Y, Yao Y, et al. Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions [J]. Earth and Planetary Science Letters, 2018, 492: 239-250. doi: 10.1016/j.jpgl.2018.04.002
|
[13] |
Plancq J, Couto J M, Ijaz U Z, et al. Next-Generation Sequencing to Identify Lacustrine Haptophytes in the Canadian Prairies: Significance for Temperature Proxy Applications [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(7): 2144-2158. doi: 10.1029/2018JG004954
|
[14] |
Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, Elsevier Ltd, 2011, 30(21–22): 2851–2891.
|
[15] |
Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: A new tool for climatic assessment [J]. Nature, 1986, 320(6058): 129-133. doi: 10.1038/320129a0
|
[16] |
Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2303-2310. doi: 10.1016/0016-7037(88)90132-9
|
[17] |
Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index
|
[18] |
Bendle J, Rosell-Melé A. Distributions of
|
[19] |
Sikes E L, Farrington J W, Keigwin L D. Use of the alkenone unsaturation ratio
|
[20] |
Jonas A S, Schwark L, Bauersachs T. Late Quaternary water temperature variations of the Northwest Pacific based on the lipid paleothermometers
|
[21] |
Max L, Lembke-Jene L, Zou J, et al. Evaluation of reconstructed sea surface temperatures based on
|
[22] |
Epstein B L, D'Hondt S, Quinn J G, et al. An effect of dissolved nutrient concentrations on alkenonebased temperature estimates [J]. Paleoceanography, 1998, 13(2): 122-126. doi: 10.1029/97PA03358
|
[23] |
Versteegh G J M, Riegman R, De Leeuw J W, et al.
|
[24] |
Hoefs M J L, Versteegh G J M, Rijpstra W F C, et al. Postdepositional oxic degradation of alkenones: Implications for the measurement of palaeo sea surface temperatures [J]. Paleoceanography, 1998, 13(1): 42-49. doi: 10.1029/97PA02893
|
[25] |
Rosell-Melé A, Comes P, Müller P J, et al. Alkenone fluxes and anomalous
|
[26] |
Harada N, Sato M, Shiraishi A, et al. Characteristics of alkenone distributions in suspended and sinking particles in the northwestern North Pacific [J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 2045-2062. doi: 10.1016/j.gca.2006.01.024
|
[27] |
Seki O, Nakatsuka T, Kawamura K, et al. Time-series sediment trap record of alkenones from the western Sea of Okhotsk[J]. Marine Chemistry, 2007, 104(3–4): 253–265.
|
[28] |
Conte M H, Sicre M A, Rühlemann C, et al. Global temperature calibration of the alkenone unsaturation index (
|
[29] |
Bijma J, Altabet M, Conte M, et al. Primary signal: Ecological and environmental factors-Report from Working Group 2 [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 2000GC000051.
|
[30] |
Sires E L, Volkman J K. Calibration of alkenone unsaturation ratios (
|
[31] |
Pelejero C, Calvo E. The upper end of the
|
[32] |
Bard E. Comparison of alkenone estimates with other paleotemperature proxies [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 2000GC000050.
|
[33] |
Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14(7).
|
[34] |
葛黄敏, 张传伦. 中国边缘海环境中GDGT的研究进展[J]. 中国科学: 地球科学, 2016, 46(4): 473–488
GE Huanmin, ZHANG Chuanlun. Advances in GDGT research in Chinese Marginal Seas: A review. Science China Earth Sciences, 2016, 46(4): 473–488.
|
[35] |
陈立雷, 李凤, 刘健. 海洋沉积物中GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8):855-867
CHEN Lilei, LI Feng, LIU Jian. Advances in glycerol dialkyl glycerol tetraethers and long-chain alkyl diols in the marine sediments: Implications for paleoclimatic and paleoenvironmental changes [J]. Advances in Earth Science, 2019, 34(8): 855-867.
|
[36] |
Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry [J]. Paleoceanography, 2004, 19(4): 1-10.
|
[37] |
Greenwood P F, Brocks J J, Grice K, et al. Organic geochemistry and mineralogy. I. Characterisation of organic matter associated with metal deposits [J]. Ore Geology Reviews, 2013, 50: 1-27. doi: 10.1016/j.oregeorev.2012.10.004
|
[38] |
Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: A study of 47 European lakes along a north-south transect [J]. Journal of Paleolimnology, 2009, 41(3): 523-540. doi: 10.1007/s10933-008-9242-2
|
[39] |
Schouten S, Hopmans E C, Sinninghe Damsté J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, Elsevier Ltd, 2013, 54: 19-61. doi: 10.1016/j.orggeochem.2012.09.006
|
[40] |
Pitcher A, Hopmans E C, Mosier A C, et al. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing Archaea enriched from marine and estuarine sediments [J]. Applied and Environmental Microbiology, 2011, 77(10): 3468-3477. doi: 10.1128/AEM.02758-10
|
[41] |
Sinninghe Damsté J S, Ossebaar J, Schouten S, et al. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: Extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake [J]. Quaternary Science Reviews, 2012, 50: 43-54. doi: 10.1016/j.quascirev.2012.07.001
|
[42] |
赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3):75-84
ZHAO Meixun, LI Dawei, XING Lei. Using archaea biomarker index TEX86 as a paleo-sea surface temperature proxy [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 75-84.
|
[43] |
Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1–2): 265–274.
|
[44] |
Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum [J]. Nature, 2006, 441(7093): 610-613. doi: 10.1038/nature04668
|
[45] |
Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean [J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1154-1173. doi: 10.1016/j.gca.2007.12.010
|
[46] |
Trommer G, Siccha M, van der Meer M T J, et al. Distribution of Crenarchaeota tetraether membrane lipids in surface sediments from the Red Sea [J]. Organic Geochemistry, Elsevier Ltd, 2009, 40(6): 724-731. doi: 10.1016/j.orggeochem.2009.03.001
|
[47] |
Liu Z, Pagani M, Zinniker D, et al. Global cooling during the eocene-oligocene climate transition[J]. 2009, 323(5918): 1187–1190.
|
[48] |
Kim J H, van der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4639-4654. doi: 10.1016/j.gca.2010.05.027
|
[49] |
Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1–2): 107–116.
|
[50] |
于晓果, 边叶萍, 阮小燕, 等. 北冰洋沉积物中四醚脂类来源与TEX86指数初步研究[J]. 海洋地质与第四纪地质, 2015, 35(3):11-22
YU Xiaoguo, BIAN Yeping, RUAN Xiaoyan, et al. Glycerol dialkyl glyceroltetraethers and TEX86 index in surface sediments of the arctic ocean and the bering sea [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 11-22.
|
[51] |
Xu Y, Jia Z, Xiao W, et al. Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: Distribution, source and environmental implications [J]. Organic Geochemistry, Elsevier Ltd, 2020, 147: 104079. doi: 10.1016/j.orggeochem.2020.104079
|
[52] |
Jenkyns H C, Schouten-Huibers L, Schouten S, et al. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean [J]. Climate of the Past, 2012, 8(1): 215-225. doi: 10.5194/cp-8-215-2012
|
[53] |
Wade B S, Houben A J P, Quaijtaal W, et al. Multiproxy record of abrupt sea-surface cooling across the Eocene-Oligocene transition in the Gulf of Mexico [J]. Geology, 2012, 40(2): 159-162. doi: 10.1130/G32577.1
|
[54] |
Schouten S, Hopmans E C, Forster A, et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids [J]. Geology, 2003, 31(12): 1069-1072. doi: 10.1130/G19876.1
|
[55] |
Tierney J E, Russell J M, Huang Y, et al. Northern hemisphere controls on tropical southeast African climate during the past 60 000 years [J]. Science, 2008, 322(5899): 252-255. doi: 10.1126/science.1160485
|
[56] |
Herfort L, Schouten S, Boon J P, et al. Application of the TEX86 temperature proxy to the southern North Sea [J]. Organic Geochemistry, 2006, 37(12): 1715-1726. doi: 10.1016/j.orggeochem.2006.07.021
|
[57] |
Menzel D, Hopmans E C, Schouten S, et al. Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1–2): 1–15.
|
[58] |
Jia G, Zhang J, Chen J, et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea [J]. Organic Geochemistry, 2012, 50: 68-77. doi: 10.1016/j.orggeochem.2012.07.002
|
[59] |
Pitcher A, Rychlik N, Hopmans E C, et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I. 1b Archaeon [J]. ISME Journal, 2010, 4(4): 542-552. doi: 10.1038/ismej.2009.138
|
[60] |
Sinninghe Damsté J S. Spatial heterogeneity of sources of branched tetraethers in shelf systems: The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia) [J]. Geochimica et Cosmochimica Acta, 2016, 186: 13-31. doi: 10.1016/j.gca.2016.04.033
|
[61] |
Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11111-11116. doi: 10.1073/pnas.0401188101
|
[62] |
Schouten S, Hopmans E C, Sinninghe Damsté J S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry [J]. Organic Geochemistry, 2004, 35(5): 567-571. doi: 10.1016/j.orggeochem.2004.01.012
|
[63] |
Sinninghe Damsté J S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane [J]. Nature, 2002, 419(6908): 708-712. doi: 10.1038/nature01128
|
[64] |
曹亚俐, 赵宗山, 赵美训. 梯烷脂在海洋厌氧氨氧化研究中的应用进展[J]. 海洋地质与第四纪地质, 2013, 33(3):159-169
CAO Yali, ZHAO Zongshan, ZHAO Meixun. The application process og ladderane lipidsas biomarkers on the study of marine anaerobic ammonium oxidation [J]. Marine Geology & Quaternary Geology, 2013, 33(3): 159-169.
|
[65] |
Rattray J E. Ladderane Lipids in Anammox Bacteria: Occurence, Biosynthesis and Application as Environmental Markers[M]. Geologica Ultraiectina, 2008, 288(288).
|
[66] |
Kartal B, De Almeida N M, Maalcke W J, et al. How to make a living from anaerobic ammonium oxidation [J]. FEMS Microbiology Reviews, 2013, 37(3): 428-461. doi: 10.1111/1574-6976.12014
|
[67] |
Chaban V V. , Nielsen M B, Kopec W, et al. Insights into the role of cyclic ladderane lipids in bacteria from computer simulations [J]. Chemistry and Physics of Lipids, 2014, 181: 76-82. doi: 10.1016/j.chemphyslip.2014.04.002
|
[68] |
Wakeham S G, Turich C, Schubotz F, et al. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin [J]. Deep-Sea Research Part I:Oceanographic Research Papers, 2012, 63: 133-156. doi: 10.1016/j.dsr.2012.01.005
|
[69] |
Han P, Gu J D. More refined diversity of anammox bacteria recovered and distribution in different ecosystems [J]. Applied Microbiology and Biotechnology, 2013, 97(8): 3653-3663. doi: 10.1007/s00253-013-4756-6
|
[70] |
Rattray J E, Van De Vossenberg J, Hopmans E C, et al. Ladderane lipid distribution in four genera of anammox bacteria [J]. Archives of Microbiology, 2008, 190(1): 51-66. doi: 10.1007/s00203-008-0364-8
|
[71] |
Rattray J E, Van Vossenberg J De, Jaeschke A, et al. Impact of temperature on ladderane lipid distribution in anammox bacteria [J]. Applied and Environmental Microbiology, 2010, 76(5): 1596-1603. doi: 10.1128/AEM.01796-09
|
[72] |
Zhao Z, Cao Y, Li L, et al. Sedimentary ladderane core lipids as potential indicators of hypoxia in the East China Sea [J]. Chinese Journal of Oceanology and Limnology, 2013, 31(1): 237-244. doi: 10.1007/s00343-013-1308-y
|
[73] |
Jaescnke A, Abbas B, Zabel M, et al. Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa [J]. Limnology and Oceanography, 2010, 55(1): 365-376. doi: 10.4319/lo.2010.55.1.0365
|
[74] |
Kuypers M M M, Silekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea [J]. Nature, 2003, 422(6932): 608-611. doi: 10.1038/nature01472
|
[75] |
Jaeschke A, Rooks C, Trimmer M, et al. Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments [J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2077-2088. doi: 10.1016/j.gca.2009.01.013
|
[76] |
曹亚俐. 利用生物标志物梯烷脂研究东海厌氧氨氧化活动的时空分布特征[D]. 中国海洋大学, 2013
CAO Yali. The study on the spatial and temporal distributions of anammox in the East China Sea by ladderane lipids[D]. Ocean University of China, 2013
|
[77] |
侯笛, 张俊杰, 邢磊, 等. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2):140-147 doi: 10.11867/j.issn.1001-8166.2019.02.0140
HOU Di, ZHANG Junjie, XING Lei, et al. Progress of long-chain alkyl diols in marine environmental reconstruction [J]. Advances in Earth Science, 2019, 34(2): 140-147. doi: 10.11867/j.issn.1001-8166.2019.02.0140
|
[78] |
De Bar M W, Hopmans E C, Verweij M, et al. Development and comparison of chromatographic methods for the analysis of long chain diols and alkenones in biological materials and sediment [J]. Journal of Chromatography A, 2017, 1521: 150-160. doi: 10.1016/j.chroma.2017.09.037
|
[79] |
De Leeuw J W, Irene W, Rijpstra C, et al. The occurrence and identification of C30, C31 and C32 alkan-1, 15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments [J]. Geochimica et Cosmochimica Acta, 1981, 45(11): 2281-2285. doi: 10.1016/0016-7037(81)90077-6
|
[80] |
Rampen S W, Willmott V, Kim J H, et al. Long chain 1, 13- and 1, 15-diols as a potential proxy for palaeotemperature reconstruction [J]. Geochimica et Cosmochimica Acta, 2012, 84: 204-216. doi: 10.1016/j.gca.2012.01.024
|
[81] |
Volkman J K, Barrett S M, Dunstan G A, et al. C30-C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae [J]. Organic Geochemistry, 1992, 18(1): 131-138. doi: 10.1016/0146-6380(92)90150-V
|
[82] |
Volkman J K, Barrett S M, Blackburn S I. Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments [J]. Organic Geochemistry, 1999, 30(5): 307-318. doi: 10.1016/S0146-6380(99)00009-1
|
[83] |
Rampen S W, Willmott V, Kim J H, et al. Evaluation of long chain 1, 14-alkyl diols in marine sediments as indicators for upwelling and temperature [J]. Organic Geochemistry, 2014, 76: 39-47. doi: 10.1016/j.orggeochem.2014.07.012
|
[84] |
Fawley K P, Fawley M W. Observations on the Diversity and Ecology of Freshwater Nannochloropsis (Eustigmatophyceae), with Descriptions of New Taxa [J]. Protist, 2007, 158(3): 325-336. doi: 10.1016/j.protis.2007.03.003
|
[85] |
Sinninghe Damsté J S, Rampen S, Irene W, et al. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in quaternary marine sediments: Indicators for high-nutrient conditions [J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1339-1348. doi: 10.1016/S0016-7037(02)01225-5
|
[86] |
Rampen S W, Schouten S, Sinninghe Damsté J S. Occurrence of long chain 1, 14-diols in Apedinella radians [J]. Organic Geochemistry, 2011, 42(5): 572-574. doi: 10.1016/j.orggeochem.2011.03.009
|
[87] |
De Bar M W, Ullgren J E, Thunnell R C, et al. Long-chain diols in settling particles in tropical oceans: Insights into sources, seasonality and proxies [J]. Biogeosciences, 2019, 16(8): 1705-1727. doi: 10.5194/bg-16-1705-2019
|
[88] |
Yang Y, Ruan X, Gao C, et al. Assessing the applicability of the long-chain diol (LDI) temperature proxy in the high-temperature South China Sea [J]. Organic Geochemistry, Elsevier Ltd, 2020, 144: 104017. doi: 10.1016/j.orggeochem.2020.104017
|
[89] |
De Bar M W, Weiss G, Yildiz C, et al. Global temperature calibration of the Long chain Diol Index in marine surface sediments [J]. Organic Geochemistry, Elsevier Ltd, 2020, 142: 103983. doi: 10.1016/j.orggeochem.2020.103983
|
[90] |
Naafs B D A, Hefter J, Stein R. Application of the long chain diol index (LDI) paleothermometer to the early Pleistocene (MIS 96) [J]. Organic Geochemistry, 2012, 49: 83-85. doi: 10.1016/j.orggeochem.2012.05.011
|
[91] |
Zhu X, Jia G, Mao S, et al. Sediment records of long chain alkyl diols in an upwelling area of the coastal northern South China Sea [J]. Organic Geochemistry, 2018, 121: 1-9. doi: 10.1016/j.orggeochem.2018.03.014
|
[92] |
Zhu X, Mao S, Sun Y, et al. Long chain diol index (LDI) as a potential measure to estimate annual mean sea surface temperature in the northern South China Sea [J]. Estuarine, Coastal and Shelf Science, 2019, 221: 1-7. doi: 10.1016/j.ecss.2019.03.012
|
[93] |
De Bar M W, Dorhout D J C, Hopmans E C, et al. Constraints on the application of long chain diol proxies in the Iberian Atlantic margin [J]. Organic Geochemistry, 2016, 101: 184-195. doi: 10.1016/j.orggeochem.2016.09.005
|
[94] |
Rodrigo-Gámiz M, Rampen S W, Schouten S, et al. The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments [J]. Organic Geochemistry, 2016, 100: 1-9. doi: 10.1016/j.orggeochem.2016.07.003
|
[95] |
Rodrigo-Gámiz M, Rampen S W, De Haas H, et al. Constraints on the applicability of the organic temperature proxies
|
[96] |
He L, Kang M, Zhang D, et al. Evaluation of environmental proxies based on long chain alkyl diols in the East China Sea [J]. Organic Geochemistry, 2020, 139: 103948. doi: 10.1016/j.orggeochem.2019.103948
|
[97] |
Lipp J S, Hinrichs K U. Structural diversity and fate of intact polar lipids in marine sediments [J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6816-6833. doi: 10.1016/j.gca.2009.08.003
|
[98] |
Liu X L, Summons R E, Hinrichs K U. Extending the known range of glycerol ether lipids in the environment: Structural assignments based on tandem mass spectral fragmentation patterns [J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2295-2302. doi: 10.1002/rcm.6355
|
[99] |
Fietz S, Huguet C, Rueda G, et al. Hydroxylated isoprenoidal GDGTs in the Nordic Seas [J]. Marine Chemistry, 2013, 152: 1-10. doi: 10.1016/j.marchem.2013.02.007
|
[100] |
Kaiser J, Arz H W. Sources of sedimentary biomarkers and proxies with potential paleoenvironmental significance for the Baltic Sea [J]. Continental Shelf Research, 2016, 122: 102-119. doi: 10.1016/j.csr.2016.03.020
|
[101] |
Elling F J, Könneke M, Mußmann M, et al. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates [J]. Geochimica et Cosmochimica Acta, 2015, 171: 238-255. doi: 10.1016/j.gca.2015.09.004
|
[102] |
Elling F J, Könneke M, Lipp J S, et al. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment [J]. Geochimica et Cosmochimica Acta, 2014, 141: 579-597. doi: 10.1016/j.gca.2014.07.005
|
[103] |
Liu X L, Lipp J S, Simpson J H, et al. Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms [J]. Geochimica et Cosmochimica Acta, 2012, 89: 102-115. doi: 10.1016/j.gca.2012.04.053
|
[104] |
Lin Y S, Lipp J S, Elvert M, et al. Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing [J]. Environmental Microbiology, 2013, 15(5): 1634-1646. doi: 10.1111/j.1462-2920.2012.02888.x
|
[105] |
Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I. 1a and I. 1b Thaumarchaeota in soil [J]. Applied and Environmental Microbiology, 2012, 78(19): 6866-6874. doi: 10.1128/AEM.01681-12
|
[106] |
Huguet C, Fietz S, Rosell-Melé A. Global distribution patterns of hydroxy glycerol dialkyl glycerol tetraethers [J]. Organic Geochemistry, 2013, 57: 107-118. doi: 10.1016/j.orggeochem.2013.01.010
|
[107] |
Lü X, Liu X L, Elling F J, et al. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a paleotemperature proxy for mid-to-low latitude marginal seas[J]. Organic Geochemistry, Elsevier Ltd, 2015, 89–90: 31–43.
|
[108] |
Fietz S, Ho S L, Huguet C, et al. Appraising GDGT-based seawater temperature indices in the Southern Ocean [J]. Organic Geochemistry, 2016, 102: 93-105. doi: 10.1016/j.orggeochem.2016.10.003
|
[109] |
Park E, Hefter J, Fischer G, et al. Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79°N) and Antarctic Polar Front (50°S) [J]. Biogeosciences, 2019, 16(11): 2247-2268. doi: 10.5194/bg-16-2247-2019
|
[110] |
Davtian N, Ménot G, Fagault Y, et al. Western Mediterranean Sea Paleothermometry Over the Last Glacial Cycle Based on the Novel RI-OH Index [J]. Paleoceanography and Paleoclimatology, 2019, 34(4): 616-634. doi: 10.1029/2018PA003452
|
[111] |
Kang S, Shin K H, Kim J H. Occurrence and distribution of hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs) in the Han River system, South Korea [J]. Acta Geochimica, 2017, 36(3): 367-369. doi: 10.1007/s11631-017-0165-3
|
[112] |
Wei B, Jia G, Hefter J, et al. Comparison of the
|
[113] |
Yang Y, Gao C, Dang X, et al. Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea [J]. Organic Geochemistry, 2018, 115: 156-165. doi: 10.1016/j.orggeochem.2017.10.014
|
[114] |
Wang C, Bendle J, Yang Y, et al. Impacts of pH and temperature on soil bacterial 3-hydroxy fatty acids: Development of novel terrestrial proxies [J]. Organic Geochemistry, 2016, 94: 21-31. doi: 10.1016/j.orggeochem.2016.01.010
|
[115] |
孙棋棋, 宋金明, 袁华茂, 等. 细菌源3-羟基脂肪酸作为环境变化代用指标的研究进展[J]. 海洋科学, 2021, 45(8):98-108
SUN Qiqi, SONG Jinming, YUAN Huanmao, et al. Bacterial 3-hydroxy fatty acids as a biomarker of environmental change [J]. Marin Sciences, 2021, 45(8): 98-108.
|
[116] |
Kumar G S, Jagannadham M V. , Ray M K. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae [J]. Journal of Bacteriology, 2002, 184(23): 6746-6749. doi: 10.1128/JB.184.23.6746-6749.2002
|
[117] |
Raetz C R H, Reynolds C M, Trent M S, et al. Lipid a modification systems in gram-negative bacteria [J]. Annual Review of Biochemistry, 2007, 76: 295-329. doi: 10.1146/annurev.biochem.76.010307.145803
|
[118] |
Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment [J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4
|
[119] |
Yang Y, Wang C, Bendle J A, et al. Appraisal of paleoclimate indices based on bacterial 3-hydroxy fatty acids in 20 Chinese alkaline lakes [J]. Organic Geochemistry, 2021, 160: 104277. doi: 10.1016/j.orggeochem.2021.104277
|
[120] |
Yang Y, Wang C, Bendle J A, et al. A new sea surface temperature proxy based on bacterial 3-hydroxy fatty acids [J]. Organic Geochemistry, 2020, 141: 104277.
|
[121] |
Sjögren J, Magnusson J, Broberg A, et al. Antifungal 3-Hydroxy Fatty Acids from Lactobacillus plantarum MiLAB 14 [J]. Applied and Environmental Microbiology, 2003, 69(12): 7554-7557. doi: 10.1128/AEM.69.12.7554-7557.2003
|
[122] |
Wakeham S G. Monocarboxylic, dicarboxylic and hydroxy acids released by sequential treatments of suspended particles and sediments of the Black Sea [J]. Organic Geochemistry, 1999, 30(9): 1059-1074. doi: 10.1016/S0146-6380(99)00084-4
|
[123] |
Matsumoto G I, Nagashima H. Occurrence of 3-hydroxy acids in microalgae and cyanobacteria and their geochemical significance [J]. Geochimica et Cosmochimica Acta, 1984, 48(8): 1683-1687. doi: 10.1016/0016-7037(84)90337-5
|
[124] |
Huguet A, Coffinet S, Roussel A, et al. Evaluation of 3-hydroxy fatty acids as a pH and temperature proxy in soils from temperate and tropical altitudinal gradients [J]. Organic Geochemistry, 2019, 129: 1-13. doi: 10.1016/j.orggeochem.2019.01.002
|
[125] |
Véquaud P, Derenne S, Thibault A, et al. Development of global temperature and pH calibrations based on bacterial 3-hydroxy fatty acids in soils [J]. Biogeosciences, 2021, 18(12): 3937-3959. doi: 10.5194/bg-18-3937-2021
|
[126] |
Mauel M J, Giovannoni S J, Fryer J L. Phylogenetic analysis of Piscirickettsia salmonis by 16S, internal transcribed spacer (ITS) and 23S ribosomal DNA sequencing [J]. Diseases of Aquatic Organisms, 1999, 35(2): 115-123.
|
[127] |
Wakeham S G, Pease T K, Benner R. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material [J]. Organic Geochemistry, 2003, 34(6): 857-868. doi: 10.1016/S0146-6380(02)00189-4
|
[128] |
Wang C, Bendle J A, Zhang H, et al. Holocene temperature and hydrological changes reconstructed by bacterial 3-hydroxy fatty acids in a stalagmite from central China [J]. Quaternary Science Reviews, 2018, 192: 97-105. doi: 10.1016/j.quascirev.2018.05.030
|
[129] |
Peterse F, van der Meer J, Schouten S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils [J]. Geochimica et Cosmochimica Acta, 2012, 96: 215-229. doi: 10.1016/j.gca.2012.08.011
|
[130] |
Bartlett M G, Chapman D S, Harris R N. A decade of ground-air temperature tracking at emigrant pass observatory, Utah [J]. Journal of Climate, 2006, 19(15): 3722-3731. doi: 10.1175/JCLI3808.1
|
[131] |
Siles J A, Margesin R. Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors? [J]. Microbial Ecology, 2016, 72(1): 207-220. doi: 10.1007/s00248-016-0748-2
|
[132] |
Margesin R, Jud M, Tscherko D, et al. Microbial communities and activities in alpine and subalpine soils [J]. FEMS Microbiology Ecology, 2009, 67(2): 208-218. doi: 10.1111/j.1574-6941.2008.00620.x
|