WANG Yunan,ZHOU Baochun,WANG Rujian,et al. Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records[J]. Marine Geology & Quaternary Geology,2022,42(4):39-49. DOI: 10.16562/j.cnki.0256-1492.2022021601
Citation: WANG Yunan,ZHOU Baochun,WANG Rujian,et al. Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records[J]. Marine Geology & Quaternary Geology,2022,42(4):39-49. DOI: 10.16562/j.cnki.0256-1492.2022021601

Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records

More Information
  • Received Date: February 15, 2022
  • Revised Date: March 16, 2022
  • Accepted Date: March 16, 2022
  • Available Online: May 25, 2022
  • The paleoceanographic history of the central Arctic Ocean since Marine Isotope Stage (MIS) 13 was reconstructed based on ostracode assemblages in a gravity core from the Alpha Ridge (modern water depth 2280 m). Over 7000 ostracode valves, including 8 genera and 11 species, were obtained from the core. The biological productivity, as represented by ostracode abundance, is low during MIS 13-10 but is markedly high throughout MIS 9-1. The distribution of Acetabulastoma arcticum, a sea ice-dwelling species, indicates that perennial sea ice was probably absent during MIS 13-9. The ostracode assemblages are predominated by Polycope spp. (an indicator of Arctic Intermediate Water, AIW) and Cytheropteron sedovi (an indicator of Arctic Ocean Deep Water, AODW), and are accompanied by Microcythere medistriatum, Pseudocythere caudata, Pedicythere spp., Cytheropteron scoresbyi, Cytheropteron higashikawai, and Henryhowella asperrima. The relative frequencies (%) of Polycope spp. and Cytheropteron sedovi show inverse correlation throughout the core. The reconstructed paleo-watermass history is as follows: initially, the core site was occupied by the upper part of AODW (MIS 13-12) and lower part of AODW (MIS 11-10); after then, the overlying AIW shifted downward and took the place of AODW (MIS 9-early MIS 5); later, the lower part of AODW shifted up rapidly (middle to late MIS 5) and finally the upper part of AODW came to settle down at the site (MIS 4-1).
  • [1]
    Rudels B. Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009 [J]. Progress in Oceanography, 2015, 132: 22-67. doi: 10.1016/j.pocean.2013.11.006
    [2]
    Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation [J]. Journal of Geophysical Research:Oceans, 1989, 94(C10): 14485-14498. doi: 10.1029/JC094iC10p14485
    [3]
    Anderson L G, Björk G, Holby O, et al. Water masses and circulation in the Eurasian Basin: results from the Oden 91 expedition [J]. Journal of Geophysical Research, 1994, 99(C2): 3273-3283. doi: 10.1029/93JC02977
    [4]
    Jones E P. Circulation in the Arctic Ocean [J]. Polar Research, 2001, 20(2): 139-146. doi: 10.1111/j.1751-8369.2001.tb00049.x
    [5]
    Rudels B, Jones E P, Schauer U, et al. Atlantic sources of the Arctic Ocean surface and halocline waters [J]. Polar Research:Oceans, 2004, 23(2): 181-208. doi: 10.1111/j.1751-8369.2004.tb00007.x
    [6]
    Rudels B, Anderson L G, Jones E P. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 1996, 101(C4): 8807-8821. doi: 10.1029/96JC00143
    [7]
    Beszczynska-Möller A, Woodgate R A, Lee C M, et al. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean [J]. Oceanography, 2011, 24(3): 82-99. doi: 10.5670/oceanog.2011.59
    [8]
    Steele M, Boyd T. Retreat of the cold halocline layer in the Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 1998, 103(C5): 10419-10435. doi: 10.1029/98JC00580
    [9]
    Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean [J]. Global Biogeochemical Cycles, 2002, 16(4): 1098. doi: 10.1029/2001GB001849
    [10]
    Aagaard K, Coachman L K, Carmack E. On the halocline of the Arctic Ocean [J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1981, 28(6): 529-545. doi: 10.1016/0198-0149(81)90115-1
    [11]
    Giles K A, Laxon S W, Ridout A L, et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre [J]. Nature Geoscience, 2012, 5(3): 194-197. doi: 10.1038/ngeo1379
    [12]
    Proshutinsky A, Krishfield R, Toole J M, et al. Analysis of the Beaufort Gyre freshwater content in 2003–2018 [J]. Journal of Geophysical Research Oceans, 2019, 124(12): 9658-9689. doi: 10.1029/2019JC015281
    [13]
    Comiso J C. Large-scale characteristics and variability of the global sea ice cover [M]. //Thomas D N, Dieckmann G S. Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology. Chapter 4. Oxford: Wiley-Blackwell, 2003: 112–141.
    [14]
    Haley B A, Frank M, Spielhagen R F, et al. Influence of brine formation on Arctic Ocean circulation over the past 15 million years [J]. Nature Geoscience, 2008, 1: 68-72. doi: 10.1038/ngeo.2007.5
    [15]
    Cronin T M, Dwyer G S, Farmer J, et al. Deep Arctic Ocean warming during the last glacial cycle [J]. Nature Geoscience, 2012, 5: 631-634. doi: 10.1038/ngeo1557
    [16]
    Gemery L, Cronin T M, Briggs Jr W M, et al. An Arctic and Subarctic ostracode database: biogeographic and paleoceanographic applications [J]. Hydrobiologia, 2015, https://doi.org/10.1007/s10750-015-2587-4.
    [17]
    Zhou B C, Wang R J, Xiao W S, et al. Late Quaternary paleoceanographic history based on ostracode records from the Chukchi Plateau, western Arctic Ocean [J]. Marine Micropaleontology, 2021, 165: 101987. doi: 10.1016/j.marmicro.2021.101987
    [18]
    Poirier R K, Cronin T M, Briggs Jr W M, et al. Central Arctic paleoceanography for the last 50 kyr based on ostracode faunal assemblages [J]. Marine Micropaleontology, 2012, 88–89: 65–76.
    [19]
    Gemery L, Cronin T M, Poirier R K, et al. Central Arctic Ocean paleoceanography from ~50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition [J]. Climate of the Past, 2017, 13(11): 1473-1489. doi: 10.5194/cp-13-1473-2017
    [20]
    周保春, 王汝建, 梅静. 末次冰消期后大西洋水进入楚科奇海台: 来自介形虫化石群的证据[J]. 海洋地质与第四纪地质, 2015, 35(3):73-82

    ZHOU Baochun, WANG Rujian, MEI Jing. The spreading of Atlantic Water onto Chukchi Plateau after Last Deglaciation: evidence from fossil ostracods [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 73-82.
    [21]
    张海生. 中国第三次北极科学考察报告[M]. 北京: 海洋出版社, 2009.

    ZHANG Haisheng. The Report of 2008 Chinese Arctic Research Expedition [M]. Beijing: China Ocean Press, 2009.
    [22]
    Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1979–2006 [J]. Journal of Geophysical Research, 2008, 113: C07003. doi: 10.1029/2007JC004558
    [23]
    Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the east Siberian continental margin [J]. Nature Geoscience, 2013, 6: 842-846. doi: 10.1038/ngeo1904
    [24]
    Jakobsson M, Nilsson J, Anderson L, et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation [J]. Nature Communications, 2016, 7: 10365. doi: 10.1038/ncomms10365
    [25]
    Yasuhara M, Stepanova A, Okahashi H, et al. Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean [J]. Micropaleontology, 2014, 60(5): 399-444.
    [26]
    Schlitzer R. Ocean Data View [EB/OL]. (2022-03-04). http://odv.awi.de.
    [27]
    Wang R J, Polyak L, Xiao W S, et al. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales [J]. Quaternary Science Reviews, 2018, 181: 93-108. doi: 10.1016/j.quascirev.2017.12.006
    [28]
    Lisiecki E, Raymo E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records [J]. Paleoceanography, 2005, 20: PA1003. doi: 10.1029/2004PA001071
    [29]
    Cronin T M, Holtz Jr T R, Stein R, et al. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean [J]. Paleoceanography, 1995, 10(2): 259-281. doi: 10.1029/94PA03149
    [30]
    Cronin T M, Polyak L, Reed D, et al. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes [J]. Quaternary Science Reviews, 2013, 79: 157-167. doi: 10.1016/j.quascirev.2012.12.010
    [31]
    Joy J A, Clark D L. The distribution, ecology and systematics of the benthic Ostracoda of the central Arctic Ocean [J]. Micropaleontology, 1977, 23(2): 129-154. doi: 10.2307/1485329
    [32]
    Jones R Ll, Whatley R C, Cronin T M, et al. Reconstructing late Quaternary deep-water masses in the Eastern Arctic Ocean using benthonic Ostracoda [J]. Marine Micropaleontology, 1999, 37: 251-272. doi: 10.1016/S0377-8398(99)00022-5
    [33]
    Sars G O. Oversigt af Norges marine Ostracoder [J]. Forhandlinger I Videnskabs-Selskabet I Christiania, 1866, 1865(1): 1-130.
    [34]
    Cronin T M, DeNinno L H, Polyak L, et al. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean [J]. Marine Micropaleontology, 2014, 111: 118-133. doi: 10.1016/j.marmicro.2014.05.001
    [35]
    Cronin T M, Gemery L, Briggs Jr W M, et al. Quaternary sea-ice history in the Arctic Ocean based on a new ostracode sea-ice proxy [J]. Quaternary Science Reviews, 2010, 29(25-26): 3415-3429. doi: 10.1016/j.quascirev.2010.05.024
    [36]
    Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(1-2): 73-93. doi: 10.1016/S0031-0182(03)00661-8
    [37]
    Spielhagen R F, Baumann K H, Erlenkeuser H, et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history [J]. Quaternary Science Reviews, 2004, 23: 1455-1483. doi: 10.1016/j.quascirev.2003.12.015
    [38]
    Adler R E, Polyak L, Crawford K A, et al. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge [J]. Global and Planetary Change, 2009, 68: 18-29. doi: 10.1016/j.gloplacha.2009.03.026
  • Related Articles

    [1]JIA Rui, XU Jingming, HAO Daiheng, LI Qingzhuo, YANG Gang. The influence of reservoir and exploitation parameters on production capacity of gas hydrate[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 202-216. DOI: 10.16562/j.cnki.0256-1492.2022122801
    [2]LI Shuanhu, QI Yue, WANG Xiaorong, GAO Yu, XING Yuanhao. Physical modelling of progressive sliding instability of loess-mudstone landslide[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 200-207. DOI: 10.16562/j.cnki.0256-1492.2022082501
    [3]GAO Shu, JIA Jianjun, YU Qian. Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 1-17. DOI: 10.16562/j.cnki.0256-1492.2023021501
    [4]MAO Peixiao, WU Nengyou, WAN Yizhao, CHEN Qiang, HU Gaowei. Effects of perforation degree and deployment position of multilateral horizontal wells on gas production from inclined clay hydrate reservoirs[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 207-217. DOI: 10.16562/j.cnki.0256-1492.2022011501
    [5]ZHAO Gege, TIAN Qingchun, DU Wuxi, PEI Yu, E Chongyi. End member model analysis of grain size for the loess in Linfen Basin, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 192-200. DOI: 10.16562/j.cnki.0256-1492.2020082601
    [6]Jingsheng LU, Youming XIONG, Dongliang LI, Deqing LIANG, Guangrong JIN, Yong HE, Xiaodong SHEN. Experimental study on sand production and seabottom subsidence of non-diagenetic hydrate reservoirs in depressurization production[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 183-195. DOI: 10.16562/j.cnki.0256-1492.2019012301
    [7]SUN Zhixue, ZHU Xuchen, LIU Lei, HE Chuqiao, DU Jinwen. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2018120402
    [8]LIU Haojia, LI Yanlong, LIU Changling, DONG Chanying, WU Nengyou, SUN Jianye. CALCULATION MODEL FOR CRITICAL VELOCITY OF SAND MOVEMENT IN DECOMPOSED HYDRATE CEMENTED SEDIMENT[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 166-173. DOI: 10.16562/j.cnki.0256-1492.2017.05.017
    [9]LI Canping, GOU Limin, YOU Jiachun, OU Chuling. STUDY ON NUMERICAL MODELS ABOUT BUBBLE PLUMES IN THE COLD SEEPAGE ACTIVE REGION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014
    [10]SHI Jinghao, LI Guangxue. A 3D MATHEMATIC MODEL FOR MULTI-COMPONENTS SEDIMENTS AND ITS APPLICATION IN JIAOZHOU BAY[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 15-24. DOI: 10.3724/SP.J.1140.2010.06015

Catalog

    Article views (1473) PDF downloads (62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return