ZHANG Hanyu,CHEN Jiaojiao,CHEN Yunping,et al. Internal friction resistance of saturated rocks under cyclic loading[J]. Marine Geology & Quaternary Geology,2022,42(3):194-203. DOI: 10.16562/j.cnki.0256-1492.2021062101
Citation: ZHANG Hanyu,CHEN Jiaojiao,CHEN Yunping,et al. Internal friction resistance of saturated rocks under cyclic loading[J]. Marine Geology & Quaternary Geology,2022,42(3):194-203. DOI: 10.16562/j.cnki.0256-1492.2021062101

Internal friction resistance of saturated rocks under cyclic loading

More Information
  • Received Date: June 20, 2021
  • Revised Date: July 22, 2021
  • Available Online: September 13, 2021
  • The stress-strain loop hysteretic nonlinear behavior of a rock is generally adopted in uniaxial cyclic loading experiments. Pore fluid, cyclic loading frequency, confining pressure and bedding direction are important external variables that cause stress and strain hysteresis, energy attenuation and rigidity change of rocks. In this paper, three comparative experiments have been carried out under the Material Testing System (MTS) for the stress-strain hysteresis with different saturated fluids, the rock energy attenuation by loading different frequency stress and saturated fluids, and Young’s modulus effect for the sandstones with different bedding directions sampled from Daqing, Nanjing, Hefei, etc. Based on the results, we clarified the nonlinear elastoplastic response characteristics of saturated rocks, and revealed the nonlinear deformation mechanism induced by external factors. And the mediating role of friction resistance on internal particle contact surfaces during rocks nonlinear elastic deformation process is proved. It is inferred that the sliding friction resistance of particles in macro-cracks may be the main internal factor resulted in the attenuation and hysteresis of rocks. This paper attempts to further reveal the dynamics process of earthquakes and rock instability based on the similarity of frictional sliding between the fine-scale rock particles and the earth-scale tectonic faults.
  • [1]
    Mayergoyz I D. Mathematical Models of Hysteresis and Their Applications[M]. Amsterdam: Academic Press, 2003.
    [2]
    李杰林, 洪流, 周科平, 等. 不同加卸载方式下饱和岩石力学特征的试验研究[J]. 矿冶工程, 2021, 41(2):15-19, 32 doi: 10.3969/j.issn.0253-6099.2021.02.004

    LI Jielin, HONG Liu, ZHOU Keping, et al. Experimental study on mechanical characteristics of saturated rock under different cyclic loading modes [J]. Mining and Metallurgical Engineering, 2021, 41(2): 15-19, 32. doi: 10.3969/j.issn.0253-6099.2021.02.004
    [3]
    单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究[J]. 实验力学, 2020, 35(1):41-57

    SHAN Junfang, XU Songlin, ZHANG Lei, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Journal of Experimental Mechanics, 2020, 35(1): 41-57.
    [4]
    徐松林, 章超, 黄俊宇, 等. 花岗岩压剪联合冲击特性与细观力学机制研究[J]. 岩石力学与工程学报, 2015, 34(10):1945-1958

    XU Songlin, ZHANG Chao, HUANG Junyu, et al. Dynamic and micromechanical behaviors of granite under combined compression and shear loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1945-1958.
    [5]
    张磊. 冲击载荷下节理面动摩擦特性研究[D]. 中国科学技术大学硕士学位论文, 2016.

    ZHANG Lei. Study on dynamic frictional properties of joint plane under impact load[D]. Master Dissertation of University of Science and Technology of China, 2016.
    [6]
    徐婕, 翟世奎, 于增慧, 等. 大洋岩石圈板块俯冲构造背景下流体的地质作用[J]. 海洋学报, 2021, 43(1):27-43

    XU Jie, ZHAI Shikui, YU Zenghui, et al. Geological processes of fluids in the oceanic lithosphere subduction [J]. Haiyang Xuebao, 2021, 43(1): 27-43.
    [7]
    金解放, 钟依禄, 余雄, 等. 岩石应力波分形分析方法的研究[J]. 有色金属科学与工程, 2021, 12(3):85-91

    JIN Jiefang, ZHONG Yilu, YU Xiong, et al. Study on the fractal analysis method of rock stress waves [J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 85-91.
    [8]
    Brace W F, Byerlee J D. Stick-slip as a mechanism for earthquakes [J]. Science, 1966, 153(3739): 990-992. doi: 10.1126/science.153.3739.990
    [9]
    Mayergoyz I. Mathematical models of hysteresis [J]. IEEE Transactions on Magnetics, 1986, 22(5): 603-608. doi: 10.1109/TMAG.1986.1064347
    [10]
    Guyer R A, Johnson P A. Nonlinear mesoscopic elasticity: evidence for a new class of materials [J]. Physics Today, 1999, 52(4): 30-36. doi: 10.1063/1.882648
    [11]
    Gordon R B, Davis L A. Velocity and attenuation of seismic waves in imperfectly elastic rock [J]. Journal of Geophysical Research, 1968, 73(12): 3917-3935. doi: 10.1029/JB073i012p03917
    [12]
    McKavanagh B, Stacey F D. Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies [J]. Physics of the Earth and Planetary Interiors, 1974, 8(3): 246-250. doi: 10.1016/0031-9201(74)90091-0
    [13]
    Spencer J W. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B3): 1803-1812. doi: 10.1029/JB086iB03p01803
    [14]
    Day S M, Minster J B. Numerical simulation of attenuated wavefields using a Padé approximant method [J]. Geophysical Journal International, 1984, 78(1): 105-118. doi: 10.1111/j.1365-246X.1984.tb06474.x
    [15]
    McCall K R, Guyer R A. Equation of state and wave propagation in hysteretic nonlinear elastic materials [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B12): 23887-23897. doi: 10.1029/94JB01941
    [16]
    Holcomb D J. Memory, relaxation, and microfracturing in dilatant rock [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B7): 6235-6248. doi: 10.1029/JB086iB07p06235
    [17]
    陈运平, 刘干斌, 姚海林. 岩石滞后非线性弹性模拟的研究[J]. 岩土力学, 2006, 27(3):341-347 doi: 10.3969/j.issn.1000-7598.2006.03.001

    CHEN Yunping, LIU Ganbin, YAO Hailin. Study on simulation for hysteretic nonlinear elasticity of rock [J]. Rock and Soil Mechanics, 2006, 27(3): 341-347. doi: 10.3969/j.issn.1000-7598.2006.03.001
    [18]
    Messerschmidt U. Dislocation Dynamics during Plastic Deformation[M]. Berlin, Heidelberg: Springer, 2010.
    [19]
    尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报, 2003, 22(1):53-60 doi: 10.3321/j.issn:1000-6915.2003.01.010

    YOU Mingqing. Effect of confining pressure on the Young’s modulus of rock specimen [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 53-60. doi: 10.3321/j.issn:1000-6915.2003.01.010
    [20]
    席道瑛, 刘小燕, 张程远. 由宏观滞回曲线分析岩石的微细观损伤[J]. 岩石力学与工程学报, 2003, 22(2):182-187 doi: 10.3321/j.issn:1000-6915.2003.02.003

    XI Daoying, LIU Xiaoyan, ZHANG Chengyuan. Analysis on Micro and Meso-damage of rock by Macro-hysteresis curve [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 182-187. doi: 10.3321/j.issn:1000-6915.2003.02.003
    [21]
    席道瑛, 徐松林. 岩石物理学基础[M]. 合肥: 中国科学技术大学出版社, 2012.

    XI Daoying, XU Songlin. Foundations of Rock Physics[M]. Hefei: University of Science and Technology of China Press, 2012.
    [22]
    陈颙, 黄庭芳. 岩石物理学[M]. 北京: 北京大学出版社, 2001.

    CHEN Yong, HUANG Tingfang. Rock Physics[M]. Beijing: Peking University Press, 2001.
    [23]
    Tullis T E, Weeks J D. Constitutive behavior and stability of frictional sliding of granite [J]. Pure and Applied Geophysics, 1986, 124(3): 383-414. doi: 10.1007/BF00877209
    [24]
    Delsanto P P, Scalerandi M. Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials [J]. Physical Review B, 2003, 68(6): 064107. doi: 10.1103/PhysRevB.68.064107
    [25]
    Thompson P A, Robbins M O. Origin of stick-slip motion in boundary lubrication [J]. Science, 1990, 250(4982): 792-794. doi: 10.1126/science.250.4982.792
    [26]
    Van Den Abeele K E A, Carmeliet J, Johnson P A, et al. Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B6): ECV 4-1-ECV 4-11.
    [27]
    赖勇. 围压对杨氏模量的影响分析[J]. 重庆交通大学学报:自然科学版, 2009, 28(2):246-249, 278

    LAI Yong. Effect analysis of confining pressure on Young’s modulus [J]. Journal of Chongqing Jiaotong University:Natural Sciences, 2009, 28(2): 246-249, 278.
    [28]
    陈运平, 王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. 岩土力学, 2010, 31(4):1030-1034 doi: 10.3969/j.issn.1000-7598.2010.04.004

    CHEN Yunping, WANG Sijing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading [J]. Rock and Soil Mechanics, 2010, 31(4): 1030-1034. doi: 10.3969/j.issn.1000-7598.2010.04.004
    [29]
    Brennan B J, Stacey F D. Frequency dependence of elasticity of rock——Test of seismic velocity dispersion [J]. Nature, 1977, 268(5617): 220-222. doi: 10.1038/268220a0
    [30]
    席道瑛, 陈运平, 陶月赞, 等. 岩石的非线性弹性滞后特征[J]. 岩石力学与工程学报, 2006, 25(6):1086-1093 doi: 10.3321/j.issn:1000-6915.2006.06.002

    XI Daoying, CHEN Yunping, TAO Yuezan, et al. Nonlinear elastic hysteric characteristics of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1086-1093. doi: 10.3321/j.issn:1000-6915.2006.06.002
    [31]
    Passchier C W, Trouw R A J. Microtectonics[M]. Berlin: Springer, 1996.
    [32]
    Stipp M, Stünitz H, Heilbronner R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C [J]. Journal of Structural Geology, 2002, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
    [33]
    Vernon R H. Review of microstructural evidence of magmatic and solid-state flow [J]. Visual Geosciences, 2000, 5(2): 1-23. doi: 10.1007/s10069-000-0002-3
    [34]
    Poirier J P. Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals[M]. Cambridge: Cambridge University Press, 1985.
    [35]
    陈运平, 席道瑛, 薛彦伟. 循环荷载下饱和岩石的滞后和衰减[J]. 地球物理学报, 2004, 47(4):672-679 doi: 10.3321/j.issn:0001-5733.2004.04.018

    CHEN Yunping, XI Daoying, XUE Yanwei. Hysteresis and attenuation of saturated rocks under cyclic loading [J]. Chinese Journal of Geophysics, 2004, 47(4): 672-679. doi: 10.3321/j.issn:0001-5733.2004.04.018
    [36]
    Raterron P, Chen J, Li L, et al. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature [J]. American Mineralogist, 2007, 92(8-9): 1436-1445. doi: 10.2138/am.2007.2474
    [37]
    张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化[J]. 高压物理学报, 2021, 35(3):031201 doi: 10.11858/gywlxb.20200640

    ZHANG Lei, WANG Wenshuai, MIAO Chunhe, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
    [38]
    汪泓, 杨天鸿, 刘洪磊, 等. 循环载荷下干燥及饱和砂岩的变形及声发射特征[J]. 东北大学学报:自然科学版, 2016, 37(8):1161-1165

    WANG Hong, YANG Tianhong, LIU Honglei, et al. Deformation and acoustic emission characteristics of dry and saturated sand under cyclic loading and unloading process [J]. Journal of Northeastern University:Natural Science, 2016, 37(8): 1161-1165.
    [39]
    刘燕, 杨小彬, 汪洋, 等. 基于裂纹的岩石摩擦滑移位移演化实验研究[J]. 矿业科学学报, 2021, 6(4):438-444

    LIU Yan, YANG Xiaobin, WANG Yang, et al. Experimental study on the displacement evolution of rock interface friction slip based on crack [J]. Journal of Mining Science and Technology, 2021, 6(4): 438-444.
    [40]
    王来贵, 赵国超, 刘向峰, 等. 滑动过程中砂岩节理摩擦系数演化规律研究[J]. 煤炭学报, 2021:1-10

    WANG Laigui, ZHAO Guochao, LIU Xiangfeng, et al. Analysis the Evolution of Friction Coefficient of Sandstone Joint during Sliding Process [J]. Journal of China Coal Society, 2021: 1-10.
    [41]
    Uchaikin V V. Fractional derivatives for physicists and engineers[M]. Berlin: Springer, 2013.
    [42]
    席道瑛, 刘爱文, 刘卫. 低频条件下饱和流体砂岩的衰减研究[J]. 地震学报, 1995(04):477-481

    XI Daoying, LIU Aiwen, LIU Wei. Attenuation of saturated fluid sandstone at low frequency [J]. Acta Seismologica Sinica, 1995(04): 477-481.
  • Related Articles

    [1]HU Jiasen, ZHANG Guoliang. High-temperature and high-pressure experiments reveal the melting behavior of serpentinites in subduction zone and the genesis of high-Mg magmas[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 157-170. DOI: 10.16562/j.cnki.0256-1492.2023091102
    [2]HE Wen, CAO Yuncheng, CHEN Duofu. Modelling of triggering of Orca submarine landslide, Cascadia margin, northeast Pacific[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 180-189. DOI: 10.16562/j.cnki.0256-1492.2022050701
    [3]WANG Hu, HUANG Bo, SUN Yongfu. Measuring method on the seepage of fine particles on seabed based on chemical tracer[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 200-206. DOI: 10.16562/j.cnki.0256-1492.2022012802
    [4]XIAO Xiao, FENG Xiuli, LIN Lin, JIANG Bo, FENG Zhiquan. An experimental research of vibration pore water pressure of remolded silt under low confining pressure: A case from Chengbei sea area[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 214-222. DOI: 10.16562/j.cnki.0256-1492.2019070401
    [5]SONG Yupeng, SUN Yongfu, DU Xing, CAO Chenglin, LI Shuling. Monitoring of silt pore pressure responding process to wave action[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 208-214. DOI: 10.16562/j.cnki.0256-1492.2018.02.021
    [6]LIU Wei, PEI Jianxiang, YU Junfeng, FAN Caiwei, ZHANG Xiuping, SHAO Yuan. PALAEOGEOMORPHOLOGIC CONTROL ON GRAVITY FLOW DEPOSITS AND GAS RESERVOIR FORMATION:A CASE STUDY FROM THE MIOCENE IN YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 197-203. DOI: 10.16562/j.cnki.0256-1492.2017.06.021
    [7]XIA Xin, JIA Yonggang, CHANG Fangqiang. AN IN-SITU RESISTIVITY MONITORING SYSTEM FOR SEABED EROSION AND DEPOSITION CHANGES AND ITS EXPERIMENT STUDY[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 197-203. DOI: 10.16562/j.cnki.0256-1492.2016.01.020
    [8]ZHANG Xiuli, PEI Jianxin, WANG Qi. PRELIMINARY STUDY OF PARAMETERS DESIGN FOR EXPLORATION OF HIGH RESISTIVITY RESERVOIR USING MARINE CSEM METHOD[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 181-188. DOI: 10.3724/SP.J.1140.2014.04181
    [9]WANG Jin-duo, XU Shu-mei, Ji Jian-qing, Yu Jian-guo, Su Chao-guang. RECOGNITION OF SAND-GRAVEL BODY AND FORECASTING ITS PETROLEUM-BEARING FEATURE IN NORTHERN STEEP SLOPE OF CHEZHEN SAG[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 93-98.
    [10]ZHANG Xian-ping, CHEN Hai-hong, ZHANG Shu-lin, YE Jia-ren. GEOTEMPERATURE-PRESSURE SYSTEMS AND RELATED RESERVOIR FORMATION IN THE XIHU SAG, EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(2): 87-91.

Catalog

    Article views (2290) PDF downloads (40) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return