Citation: | LIU Gang,JIN Dingjian,WU Fang,et al. Application of airborne LiDAR to identification of underwater geomorphology and fine interpretation of faults.[J]. Marine Geology & Quaternary Geology,2022,42(2):190-199. DOI: 10.16562/j.cnki.0256-1492.2021061502 |
[1] |
赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794 doi: 10.11947/j.AGCS.2017.20170276
ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786-1794. doi: 10.11947/j.AGCS.2017.20170276
|
[2] |
翟国君, 黄谟涛. 海洋测量技术研究进展与展望[J]. 测绘学报, 2017, 46(10):1752-1759 doi: 10.11947/j.AGCS.2017.20170309
ZHAI Guojun, HUANG Motao. The review of development of marine surveying Technology [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1752-1759. doi: 10.11947/j.AGCS.2017.20170309
|
[3] |
马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3):331-351 doi: 10.3969/j.issn.1671-6647.2018.03.001
MA Yi, ZHANG Jie, ZHANG Jingyu, et al. Progress in shallow water depth mapping from optical remote sensing [J]. Advances in Marine Science, 2018, 36(3): 331-351. doi: 10.3969/j.issn.1671-6647.2018.03.001
|
[4] |
韩孝辉, 薛玉龙, 刘刚. 海上风电场建设的前期地质调查研究方法[J]. 工程勘察, 2018, 46(3):29-34
HAN Xiaohui, XUE Yulong, LIU Gang. Study methods for preliminary geological survey of the construction of offshore wind farms [J]. Geotechnical Investigation & Surveying, 2018, 46(3): 29-34.
|
[5] |
孟庆生, 楚贤峰, 郭秀军, 等. 高分辨率数据处理技术在近海工程地震勘探中的应用[J]. 地球物理学进展, 2007, 22(3):1006-1010 doi: 10.3969/j.issn.1004-2903.2007.03.053
MENG Qingsheng, CHU Xianfeng, GUO Xiujun, et al. The application of high resolution seismic data processing technique in multi-channel shallow offshore engineering seismic surveys [J]. Progress in Geophysics, 2007, 22(3): 1006-1010. doi: 10.3969/j.issn.1004-2903.2007.03.053
|
[6] |
孙运宝, 赵铁虎, 潘军, 等. 表面多次波衰减技术在渤海海峡应用效果[J]. 海洋地质与第四纪地质, 2015, 35(2):179-184
SUN Yunbao, ZHAO Tiehu, PAN Jun, et al. The application of SRME to high resolution seismic exploration in shallow sea environment [J]. Marine Geology & Quaternary Geology, 2015, 35(2): 179-184.
|
[7] |
Parker H, Sinclair M. The successful application of Airborne LiDAR Bathymetry surveys using latest technology[C]//2012 Oceans-Yeosu. Yeosu, Korea (South): IEEE, 2012.
|
[8] |
Feygels V, Ramnath V, Smith B, et al. Meeting the international hydrographic organization requirements for bottom feature detection using the Coastal Zone Mapping and Imaging Lidar (CZMIL)[C]//OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1-6.
|
[9] |
Pastol Y. Use of airborne LiDAR bathymetry for coastal hydrographic surveying: the French experience [J]. Journal of Coastal Research, 2011, 62(10062): 6-18.
|
[10] |
Wozencraft J, Millar D. Airborne lidar and integrated technologies for coastal mapping and nautical charting [J]. Marine Technology Society Journal, 2005, 39(3): 27-35. doi: 10.4031/002533205787442440
|
[11] |
Legleiter C J, Overstreet B T, Glennie C L, et al. Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments [J]. Earth Surface Processes and Landforms, 2016, 41(3): 344-363. doi: 10.1002/esp.3794
|
[12] |
Fernandez-Diaz J C, Glennie C L, Carter W E, et al. Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(2): 623-635. doi: 10.1109/JSTARS.2013.2265255
|
[13] |
Schwarz R, Mandlburger G, Pfennigbauer M, et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 1-10. doi: 10.1016/j.isprsjprs.2019.02.002
|
[14] |
Wright C W, Kranenburg C, Battista T A, et al. Depth calibration and validation of the experimental advanced airborne research Lidar, EAARL-B [J]. Journal of Coastal Research, 2016, 76(sp1): 4-17.
|
[15] |
Kotilainen A T, Kaskela A M. Comparison of airborne LiDAR and shipboard acoustic data in complex shallow water environments: Filling in the white ribbon zone [J]. Marine Geology, 2017, 385: 250-259. doi: 10.1016/j.margeo.2017.02.005
|
[16] |
贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8):6-16
HE Yan, HU Shanjiang, CHEN Weibiao, et al. Research progress of domestic airborne dual-frequency technology LiDAR detection [J]. Laser & Optoelectronics Progress, 2018, 55(8): 6-16.
|
[17] |
Guenther G C. Airborne lidar bathymetry digital elevation. model technologies and applications[M]//Maune M D. The DEM Users Manual. 2nd ed. Maryland: American Society for Photogrammetry and Remote Sensing, 2007: 253-320.
|
[18] |
Jerlov N G. Optical Oceanography[M]. New York: Elsevier, 1968: 167-168.
|
[19] |
金鼎坚, 吴芳, 于坤, 等. 机载激光雷达测深系统大规模应用测试与评估: 以中国海岸带为例[J]. 红外与激光工程, 2020, 49(S2):20200317
JIN Dingjian, WU Fang, YU Kun, et al. Large-scale application test and evaluation of an airborne lidar bathymetry system-A case study in China’s coastal zone [J]. Infrared and Laser Engineering, 2020, 49(S2): 20200317.
|
[20] |
周成虎, 程维眀, 钱金凯. 数字地貌遥感解析与制图[M]. 北京: 科学出版社, 2009: 42-51
ZHOU Chenghu, CHENG Weiming, QIAN Jinkai. Digital Geomorphological Interpretation and Mapping from Remote Sensing[M]. Beijing: Science Press, 2009: 42-51
|
[21] |
田明中, 程捷. 第四纪地质学与地貌学[M]. 北京: 地质出版社, 2009: 157-163
TIAN Mingzhong, CHENG Jie. Quaternary Geology and Geomorphology[M]. Beijing: Geological Publishing House, 2009: 157-163.
|
[22] |
曹超, 蔡锋, 郑勇玲, 等. 中国近海海底地形特征及剖面类型分析[J]. 中南大学学报(自然科学版), 2014, 45(2):483-494
CAO Chao, CAI Feng, ZHENG Yongling, et al. Topography characteristics and profile type of China offshore submarine [J]. Journal of Central South University (Science and Technology), 2014, 45(2): 483-494.
|
[23] |
刘以宣, 钟建强, 詹文欢. 南海及邻域新构造运动基本特征[J]. 海洋地质与第四纪地质, 1994, 14(4):1-13
LIU Yixuan, ZHONG Jianqiang, ZHAN Wenhuan. Basic characteristics of neotectonism in South China Sea and its adjacent regions [J]. Marine Geology & Quaternary Geology, 1994, 14(4): 1-13.
|
[24] |
刘瑞华, 张仲英. 海南岛的新构造运动特征[J]. 热带地理, 1989, 9(2):174-182
LIU Ruihua, ZHANG Zhongying. Characteristics of Neotectonic Movement in Hainan Island [J]. Tropical Geography, 1989, 9(2): 174-182.
|
[25] |
赵国强, 苏小宁. 基于GPS获得的中国大陆现今地壳运动速度场[J]. 地震, 2014, 34(1):97-103 doi: 10.3969/j.issn.1000-3274.2014.01.011
ZHAO Guoqiang, SU Xiaoning. Present-day crustal movement velocity field in mainland China derived from GPS observations [J]. Earthquake, 2014, 34(1): 97-103. doi: 10.3969/j.issn.1000-3274.2014.01.011
|
[26] |
梁光河. 海南岛的成因机制研究[J]. 中国地质, 2018, 45(4):693-705 doi: 10.12029/gc20180404
LIANG Guanghe. A study of the genesis of Hainan Island [J]. Geology in China, 2018, 45(4): 693-705. doi: 10.12029/gc20180404
|