Citation: | YU Zhe,DENG Yinan,CHEN Chen,et al. Trace elements geochemistry of marine sediments and its implications for gas hydrate exploration [J]. Marine Geology & Quaternary Geology,2022,42(1):111-122. DOI: 10.16562/j.cnki.0256-1492.2021040101 |
[1] |
Dickens G R, O'Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J]. Paleoceanography, 1995, 10(6): 965-971. doi: 10.1029/95PA02087
|
[2] |
Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event [J]. Nature, 2000, 406(6794): 392-395. doi: 10.1038/35019044
|
[3] |
Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope [J]. Marine and Petroleum Geology, 2003, 20(2): 111-128. doi: 10.1016/S0264-8172(03)00024-2
|
[4] |
Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis [J]. Geology, 2004, 32(1): 53-56. doi: 10.1130/G20114.1
|
[5] |
Wellsbury P, Goodman K, Cragg B A, et al. The geomicrobiology of deep marine sediments from Blake ridge containing methane hydrate (sites 994, 995, and 997)[M]//Paull C K, Matsumoto R, Wallace P, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 2000, 164: 379-391.
|
[6] |
邓希光, 吴庐山, 付少英, 等. 南海北部天然气水合物研究进展[J]. 海洋学研究, 2008, 26(2):67-74 doi: 10.3969/j.issn.1001-909X.2008.02.010
DENG Xiguang, WU Lushan, FU Shaoying, et al. The research advances of natural gas hydrates in northern South China Sea [J]. Journal of Marine Science, 2008, 26(2): 67-74. doi: 10.3969/j.issn.1001-909X.2008.02.010
|
[7] |
吴能友, 梁金强, 王宏斌, 等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质, 2008, 22(3):356-362 doi: 10.3969/j.issn.1000-8527.2008.03.003
WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art [J]. Geoscience, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003
|
[8] |
姚伯初, 杨木壮, 吴时国, 等. 中国海域的天然气水合物资源[J]. 现代地质, 2008, 22(3):333-341 doi: 10.3969/j.issn.1000-8527.2008.03.001
YAO Bochu, YANG Muzhuang, WU Shiguo, et al. The gas hydrate resources in the China seas [J]. Geoscience, 2008, 22(3): 333-341. doi: 10.3969/j.issn.1000-8527.2008.03.001
|
[9] |
何家雄, 卢振权, 张伟, 等. 南海北部珠江口盆地深水区天然气水合物成因类型及成矿成藏模式[J]. 现代地质, 2015, 29(5):1024-1034 doi: 10.3969/j.issn.1000-8527.2015.05.005
HE Jiaxiong, LU Zhengquan, ZHANG Wei, et al. Biogenetic and Sub-biogenetic gas resource and genetic types of natural gas hydrates in Pearl River Mouth Basin, Northern Area of South China Sea [J]. Geoscience, 2015, 29(5): 1024-1034. doi: 10.3969/j.issn.1000-8527.2015.05.005
|
[10] |
Deng Y N, Chen F, Hu Y, et al. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea [J]. Ore Geology Reviews, 2020, 125: 103701. doi: 10.1016/j.oregeorev.2020.103701
|
[11] |
Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea [J]. Chemical Geology, 2016, 443: 173-181. doi: 10.1016/j.chemgeo.2016.09.029
|
[12] |
邓义楠, 方允鑫, 张欣, 等. 南海琼东南海域沉积物的微量元素地球化学特征及其对天然气水合物的指示意义[J]. 海洋地质与第四纪地质, 2017, 37(5):70-81
DENG Yi’nan, FANG Yunxin, ZHANG Xin, et al. Trace element geochemistry of sediments in Qiongdongnan area, the South China Sea, and its implications for gas hydrates [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 70-81.
|
[13] |
冯东, 陈多福. 海底沉积物孔隙水钡循环对天然气渗漏的指示[J]. 地球科学进展, 2007, 22(1):49-57 doi: 10.3321/j.issn:1001-8166.2007.01.007
FENG Dong, CHEN Duofu. Barium Cycling in pore water of seafloor sediment: indicator of methane fluxes [J]. Advances in Earth Science, 2007, 22(1): 49-57. doi: 10.3321/j.issn:1001-8166.2007.01.007
|
[14] |
吴庐山, 杨胜雄, 梁金强, 等. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544 doi: 10.3969/j.issn.1000-8527.2010.03.018
WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at Site HQ-48PC in Qiongdongnan Area, the North of the South China Sea, and their implication for gas hydrates [J]. Geoscience, 2010, 24(3): 534-544. doi: 10.3969/j.issn.1000-8527.2010.03.018
|
[15] |
Sato H, Hayashi K I, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: insights into the effect of anaerobic oxidation of methane [J]. Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013
|
[16] |
Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003
|
[17] |
Ge L, Jiang S Y, Swennen R, et al. Chemical environments of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry [J]. Marine Geology, 2010, 277(1-4): 21-30. doi: 10.1016/j.margeo.2010.08.008
|
[18] |
Hu Y, Feng D, Peckmann J, et al. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps [J]. Chemical Geology, 2014, 381: 55-66. doi: 10.1016/j.chemgeo.2014.05.014
|
[19] |
Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
|
[20] |
Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021
|
[21] |
Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: an overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021
|
[22] |
张伟, 梁金强, 苏丕波, 等. 南海北部陆坡高饱和度天然气水合物气源运聚通道控藏作用[J]. 中国地质, 2018, 45(1):1-14 doi: 10.12029/gc20180101
ZHANG Wei, LIANG Jinqiang, SU Pibo, et al. Migrating pathways of hydrocarbons and their controlling effects associated with high saturation gas hydrate in Shenhu area, northern South China Sea [J]. Geology in China, 2018, 45(1): 1-14. doi: 10.12029/gc20180101
|
[23] |
Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X
|
[24] |
冯东, 陈多福, 苏正, 等. 海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展[J]. 海洋地质与第四纪地质, 2006, 26(3):125-131
FENG Dong, CHEN Duofu, SU Zheng, et al. Anaerobic oxidation of methane and seep carbonate precipitation kinetics at seafloor [J]. Marine Geology & Quaternary Geology, 2006, 26(3): 125-131.
|
[25] |
Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1
|
[26] |
Riedinger N, Kasten S, Gröger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape basin [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 876-887. doi: 10.1016/j.jpgl.2005.10.032
|
[27] |
Aloisi G, Wallmann K, Bollwerk S M, et al. The effect of dissolved barium on biogeochemical processes at cold seeps [J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1735-1748.
|
[28] |
Torres M E, Bohrmann G, Dubé T E, et al. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins [J]. Geology, 2003, 31(10): 897-900. doi: 10.1130/G19652.1
|
[29] |
Berner R A. Diagenetic models of dissolved species in the interstitial waters of compacting sediments [J]. American Journal of Science, 1975, 275(1): 88-96. doi: 10.2475/ajs.275.1.88
|
[30] |
Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence [J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631-3642. doi: 10.1016/0016-7037(96)00195-0
|
[31] |
Helz G R, Bura-Nakić E, Mikac N, et al. New model for molybdenum behavior in euxinic waters [J]. Chemical Geology, 2011, 284(3-4): 323-332. doi: 10.1016/j.chemgeo.2011.03.012
|
[32] |
Zheng Y, Anderson R F, Van Geen A, et al. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin [J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178. doi: 10.1016/S0016-7037(00)00495-6
|
[33] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
|
[34] |
Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009
|
[35] |
Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
|
[36] |
Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001
|
[37] |
Ferré B, Jansson P G, Moser M, et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions [J]. Nature Geoscience, 2020, 13(2): 144-148. doi: 10.1038/s41561-019-0515-3
|
[38] |
Crémière A, Lepland A, Chand S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet [J]. Nature Communications, 2016, 7: 11509. doi: 10.1038/ncomms11509
|