LIU Yanan,JIA Chao,HU Bangqi,et al. Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features[J]. Marine Geology & Quaternary Geology,2022,42(1):214-221. DOI: 10.16562/j.cnki.0256-1492.2020121801
Citation: LIU Yanan,JIA Chao,HU Bangqi,et al. Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features[J]. Marine Geology & Quaternary Geology,2022,42(1):214-221. DOI: 10.16562/j.cnki.0256-1492.2020121801

Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features

More Information
  • Received Date: December 17, 2020
  • Revised Date: February 01, 2021
  • Available Online: May 27, 2021
  • In addition to underwater resource development, submarine construction and engineering have become great concerns to marine geoscientists. Both of them require accurate sea-bottom stability evaluation. However, mainly due to the limitation of offshore technology, it is difficult for the time being to acquire high-precision data for accurate and comprehensive evaluation of the stability. In order to solve this problem, a method for stability evaluation of submarine engineering is proposed in this paper based on microgeomorphologic features. Based on the existing research, this paper selected a region in the south-central Philippines Sea of the Western Pacific as the target area, and a Digital Elevation Model (DEM) using ArcGIS is established to extract macro and micro geomorphological factors. Combined with seismic data, bottom sediments and distribution pattern of geo-hazards in the study area, the fuzzy mathematical evaluation method was adopted to evaluate the submarine stability, and an evaluation map was compiled. The results show that by analysis of the stability for 3220 evaluation units in the region, the seabed can be divided into 5 grades according to its stability, including stable, basic stable, relatively stable, relatively unstable and unstable. The stable areas are mainly located in the central and northern part where the sea bottom is flat, while the unstable areas occur in the large-scale geomorphic units such as the Kyushu-Palau Ridge, seamounts and intermontane basins. It is revealed that the stability of the seabed of the study area is closely related to the change in topography and landform. The practice proves that the submarine stability evaluation method based on micro-geomorphic features proposed in this paper is useful and efficient, and may well serve the stability evaluation required in similar regions.
  • [1]
    陈连增, 雷波. 中国海洋科学技术发展70年[J]. 海洋学报, 2019, 41(10):3-22

    CHEN Lianzeng, LEI Bo. Marine science and technology development over the past 70 years in China [J]. Acta Oceanologica Sinica, 2019, 41(10): 3-22.
    [2]
    夏真. 海洋地质学的军事战略意义[J]. 南海地质研究, 2010:83-90

    XIA Zhen. The significance of marine geology in military strategy [J]. Gresearch of Eological South China Sea, 2010: 83-90.
    [3]
    汪品先. 大洋钻探与中国的海洋地质[J]. 海洋地质与第四纪地质, 2019, 39(1):7-14

    WANG Pinxian. Ocean drilling and marine geology in China [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 7-14.
    [4]
    杜军, 李培英, 李萍, 等. 基于海洋灾害地质评价基础上的我国近海海底稳定性区划[J]. 海洋学报, 2014, 36(5):124-129

    DU Jun, LI Peiying, LI Ping, et al. The seabed stability zonation based on the marine geohazards evaluation in China [J]. Acta Oceanologica Sinica, 2014, 36(5): 124-129.
    [5]
    马秀冬, 李萍, 徐元芹, 等. 冲绳海槽中段海底灾害地质类型及海底稳定性评价[J]. 海洋科学进展, 2018, 36(1):79-87 doi: 10.3969/j.issn.1671-6647.2018.01.007

    MA Xiudong, LI Ping, XU Yuanqin, et al. Submarine geohazards types and seabed stability evaluation of the middle part of the Okinawa Trough [J]. Advances in Marine Science, 2018, 36(1): 79-87. doi: 10.3969/j.issn.1671-6647.2018.01.007
    [6]
    MacKillop K, Fenton G, Mosher D, et al. Assessing submarine slope stability through deterministic and probabilistic approaches: a case study on the west-central scotia slope [J]. Geosciences, 2019, 9(1): 18.
    [7]
    Bellwald B, Urlaub M, Hjelstuen B O, et al. NE Atlantic continental slope stability from a numerical modeling perspective [J]. Quaternary Science Reviews, 2019, 203: 248-265. doi: 10.1016/j.quascirev.2018.11.019
    [8]
    Ionov V Y, Kalinin E V, Fomenko I K, et al. Regional slope stability assessment along the Caucasian shelf of the Black Sea[M]//Krastel S, Behrmann J H, Völker D, et al. Submarine Mass Movements and Their Consequences: 6th International Symposium. Cham: Springer, 2014, 37: 201-212.
    [9]
    Dimakis P, Elverhøi A, Høeg K, et al. Submarine slope stability on high-latitude glaciated Svalbard–Barents Sea margin [J]. Marine Geology, 2000, 162(2-4): 303-316. doi: 10.1016/S0025-3227(99)00076-6
    [10]
    Ten Brink U S, Andrews B D, Miller N C. Seismicity and sedimentation rate effects on submarine slope stability [J]. Geology, 2018, 44(7): 563-566.
    [11]
    Lehner F K, Schöepfer M P J. Slope stability and exact solutions for cohesive critical Coulomb wedges from Mohr diagrams [J]. Journal of Structural Geology, 2018, 116: 234-240. doi: 10.1016/j.jsg.2018.04.021
    [12]
    胡光海, 刘振夏, 房俊伟. 国内外海底斜坡稳定性研究概况[J]. 海洋科学进展, 2006, 24(1):130-136 doi: 10.3969/j.issn.1671-6647.2006.01.017

    HU Guanghai, LIU Zhenxia, FANG Junwei. A review of submarine slope stability studies at home and abroad [J]. Advances in Marine Science, 2006, 24(1): 130-136. doi: 10.3969/j.issn.1671-6647.2006.01.017
    [13]
    Guo X S, Zheng D F, Nian T K, et al. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea [J]. Marine Georesources & Geotechnology, 2020, 38(7): 804-817.
    [14]
    徐元芹, 李萍, 刘乐军, 等. 河北南堡-曹妃甸海域工程地质条件及海底稳定性评价[J]. 海洋学报, 2017, 39(5):103-114

    XU Yuanqin, LI Ping, LIU Lejun, et al. Engineering geological conditions and seabed stability assessment of Nanpu-Caofeidian, Hebei Province [J]. Acta Oceanologica Sinica, 2017, 39(5): 103-114.
    [15]
    宋晓帅, 于开宁, 吴振, 等. 莱州湾海岸带工程地质环境质量分区[J]. 海洋地质与第四纪地质, 2019, 39(2):79-89

    SONG Xiaoshuai, YU Kaining, WU Zhen, et al. Engineering geological environment quality division of Laizhou Bay coastal zone [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 79-89.
    [16]
    李常珍, 李乃胜, 林美华. 菲律宾海的地势特征[J]. 海洋科学, 2000, 24(6):47 doi: 10.3969/j.issn.1000-3096.2000.06.014

    LI Changzhen, LI Naisheng, LIN Meihua. Terrain features of the Philippine Sea [J]. Marine Sciences, 2000, 24(6): 47. doi: 10.3969/j.issn.1000-3096.2000.06.014
    [17]
    Macpherson C G, Hall R. Tectonic setting of Eocene boninite magmatism in the Izu–Bonin–Mariana forearc [J]. Earth and Planetary Science Letters, 2001, 186(2): 215-230. doi: 10.1016/S0012-821X(01)00248-5
    [18]
    Takahashi N, Suyehiro K, Shinohara M. Implications from the seismic crustal structure of the northern Izu-Bonin arc [J]. The Island Arc, 1998, 7(3): 383-394. doi: 10.1111/j.1440-1738.1998.00197.x
    [19]
    Ark J O, Hori T, Kaneda Y. Seismotectonic implications of the Kyushu-Palau Ridge subducting beneath the westernmost Nankai Forearc [J]. Earth, Planets and Space, 2009, 61(8): 1013-1018. doi: 10.1186/BF03352951
    [20]
    Nishizawa A, Kaneda K, Katagiri Y, et al. Variation in crustal structure along the Kyushu-Palau Ridge at 15-21 N on the Philippine Sea plate based on seismic refraction profiles [J]. Earth, Planets and Space, 2007, 59(6): e17-e20. doi: 10.1186/BF03352711
    [21]
    Yamashita M, Tsuru T, Takahashi N, et al. Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data [J]. Island Arc, 2007, 16(3): 338-347. doi: 10.1111/j.1440-1738.2007.00594.x
    [22]
    张斌, 李广雪, 黄继峰. 菲律宾海构造地貌特征[J]. 海洋地质与第四纪地质, 2014, 34(2):79-88

    ZHANG Bin, LI Guangxue, HUANG Jifeng. The tectonic geomorphology of the Philippine sea [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 79-88.
    [23]
    闫满存, 王光谦, 李保生, 等. 基于模糊数学的广东沿海陆地地质环境区划[J]. 地理学与国土研究, 2000, 16(4):41-48

    YAN Mancun, WANG Guangqian, LI Baosheng, et al. Land Geoenvironmental Regionalization of Guangdong Coast by Fuzzy [J]. Geography and Territorial Research, 2000, 16(4): 41-48.
    [24]
    郭芳芳, 杨农, 孟晖, 等. 地形起伏度和坡度分析在区域滑坡灾害评价中的应用[J]. 中国地质, 2008, 35(1):131-143 doi: 10.3969/j.issn.1000-3657.2008.01.014

    GUO Fangfang, YANG Nong, MENG Hui, et al. Application of the relief amplitude and slope analysis to regional landslide hazard assessments [J]. Geology in China, 2008, 35(1): 131-143. doi: 10.3969/j.issn.1000-3657.2008.01.014
    [25]
    兰燕, 王明华, 刘珊红, 等. 逐点内插法建立DEM的研究[J]. 测绘科学, 2009, 34(1):214-216 doi: 10.3771/j.issn.1009-2307.2009.01.077

    LAN Yan, WANG Minghua, LIU Shanhong, et al. Study on building DEM based on point-by-point interpolation algorithm [J]. Science of Surveying and Mapping, 2009, 34(1): 214-216. doi: 10.3771/j.issn.1009-2307.2009.01.077
    [26]
    涂汉明, 刘振东. 中国地势起伏度最佳统计单元的求证[J]. 湖北大学学报:自然科学版, 1990, 12(3):266-271

    XU Hanming, LIU Zhendong. Demonstrating on optimum statistic unit of relief amplitude in China [J]. Journal of Hubei University (Natural Science), 1990, 12(3): 266-271.
    [27]
    陈曦, 曾亚武, 刘伟, 等. 岩体基本质量分级模糊综合评价法研究[J]. 武汉大学学报: 工学版, 2019, 52(6):511-522

    CHEN Xi, ZENG Yawu, LIU Wei, et al. Research on classification of rock mass basic quality based on fuzzy comprehensive evaluation method [J]. Engineering Journal of Wuhan University, 2019, 52(6): 511-522.
    [28]
    马林伟, 吴时国. 海底滑坡过程的分段模拟研究[C]//国家安全地球物理丛书(十五)——丝路环境与地球物理. 西安: 西安地图出版社, 2019: 65-69.

    MA Linwei, WU Shiguo. Subsection simulation of submarine landslide process[C]//National Security Geophysics Series (xv) - Silk Road Environment and Geophysics. Xi'an: Xi'an Map Publishing House, 2019: 65-69.
    [29]
    Whelan N T, Cohmen J M, Suhayda J N, et al. Acoustical penetration and shear strength in gas-charged sediment [J]. Marine Geotechnology, 1977, 2: 147-159. doi: 10.1080/10641197709379776
    [30]
    马云, 李三忠, 夏真, 等. 南海北部神狐陆坡区灾害地质因素特征[J]. 地球科学—中国地质大学学报, 2014, 39(9):1364-1372

    MA Yun, LI Sanzhong, XIA Zhen, et al. Characteristics of hazardous geological factors on Shenhu continental slope in the Northern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(9): 1364-1372.
    [31]
    Sultan N, Voisset M, Marsset B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta [J]. Marine Geology, 2006, 237(3-4): 169-190.
    [32]
    许文锋, 车爱兰, 王治, 等. 地震荷载作用下海底滑坡特征及其机理[J]. 上海交通大学学报, 2011, 45(5):782-786

    XU Wenfeng, CHE Ailan, WANG Zhi, et al. Destruction characteristic of seabed landslide during earthquake motion and its mechanism [J]. Journal of Shanghai Jiaotong University, 2011, 45(5): 782-786.
    [33]
    Imbo Y, De Batist M, Canals M, et al. The Gebra Slide: a submarine slide on the trinity peninsula margin, Antarctica [J]. Marine Geology, 2003, 193(3-4): 235-252. doi: 10.1016/S0025-3227(02)00664-3
    [34]
    朱友生. 南海北部陆架边缘区域地质灾害类型特征及分布规律[J]. 中国海上油气, 2017, 29(3):107-115

    ZHU Yousheng. Features and distribution pattern of the geological hazards in the northern continental shelf margins of South China Sea [J]. China Offshore Oil and Gas, 2017, 29(3): 107-115.
    [35]
    谢先得, 朱照宇, 覃慕陶, 等. 广东沿海地质环境与地质灾害[M]. 广州: 广东科技出版社, 2003.

    XIE Xiande, ZHU Zhaoyu, QIN Mutao, et al. Geological Environment and Geological Hazards Along the Coast of Guangdong Province[M]. Guangzhou: Guangdong Science and Technology Press, 2003.
    [36]
    杜军, 李培英, 魏巍, 等. 中国海岸带灾害地质稳定性区划[J]. 自然灾害学报, 2008, 17(4):1-6 doi: 10.3969/j.issn.1004-4574.2008.04.001

    DU Jun, LI Peiying, WEI Wei, et al. Stability zoning of hazard geology in coastal zone of China [J]. Journal of Natural Disasters, 2008, 17(4): 1-6. doi: 10.3969/j.issn.1004-4574.2008.04.001
    [37]
    蔡鹤生, 周爱国, 唐朝晖. 地质环境质量评价中的专家-层次分析定权法[J]. 地球科学—中国地质大学学报, 1998, 23(3):299-302

    CAI Hesheng, ZHOU Aiguo, TANG Zhaohui. Expert-analytic hierarchy weighting process in geological environmental quality assessment [J]. Earth Science—Journal of China University of Geosciences, 1998, 23(3): 299-302.
  • Cited by

    Periodical cited type(9)

    1. Shu-yu Wu,Jun Liu,Jian-wen Chen,Qi-liang Sun,Yin-guo Zhang,Jie Liang,Yong-cai Feng. Carboniferous-Early Permian heterogeneous distribution of porous carbonate reservoirs in the Central Uplift of the South Yellow Sea Basin and its hydrocarbon potential analysis. China Geology. 2025(01): 58-76 .
    2. 张建民,王志才,付俊东,王冬雷,夏暖,王凯,许洪泰,王雷. 连云港市主要断裂活动性研究. 海洋地质与第四纪地质. 2025(02): 98-109 . 本站查看
    3. 袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 .
    4. 陈建文,杨长清,张莉,钟广见,王建强,吴飘,梁杰,张银国,蓝天宇,薛路. 中国海域前新生代地层分布及其油气勘查方向. 海洋地质与第四纪地质. 2022(01): 1-25 . 本站查看
    5. 李志强,杨波,韩自军,黄振,吴庆勋. 南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示. 地球科学. 2022(05): 1652-1668 .
    6. 王惠初,相振群,任云伟,康健丽,初航,王智,滕菲,佟鑫. 扬子北缘还是华北东南缘:胶东新元古代花岗片麻岩构造归属新议. 地质学报. 2022(09): 3012-3033 .
    7. 梁杰,许明,陈建文,张银国,王建强,雷宝华,袁勇,吴淑玉,李慧君. 印支运动在南黄海盆地的响应及其对油气地质条件的影响. 地质通报. 2021(Z1): 252-259 .
    8. 张玉玺,陈建文,张银国. 下扬子-南黄海地区下三叠统“错时相”沉积及成因. 海洋地质前沿. 2021(04): 68-76 .
    9. 陈建文,张异彪,陈华,刘俊,何玉华,施剑,李斌,袁勇,梁杰,张银国,雷宝华,王建强,吴淑玉,吴志强,闫桂京,陈春峰,肖国林. 南黄海盆地海相中-古生界地震探测技术攻关历程及效果. 海洋地质前沿. 2021(04): 1-17 .

    Other cited types(3)

Catalog

    Article views (2306) PDF downloads (177) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return