Citation: | XU Ming, CHEN Jianwen, YUAN Yong, ZHANG Yinguo, LIANG Jie, LI Huijun, WANG Jianqiang, WU Shuyu. Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 82-90. DOI: 10.16562/j.cnki.0256-1492.2020101601 |
[1] |
Zhou L, Kang Z H, Wang Z X, et al. Sedimentary geochemical investigation for Paleo environment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform [J]. Journal of Petroleum Science and Engineering, 2017, 159: 376-386. doi: 10.1016/j.petrol.2017.09.047
|
[2] |
Li Y F, Fan T L, Zhang J C, et al. Geochemical changes in the Early Cambrian interval of the Yangtze Platform, South China: Implications for hydrothermal influences and paleocean redox conditions [J]. Journal of Asian Earth Sciences, 2015, 109: 100-123. doi: 10.1016/j.jseaes.2015.05.003
|
[3] |
Ren Y, Zhong D K, Gao C L, et al. The paleoenvironmental evolution of the Cambrian Longwangmiao Formation (Stage 4, Toyonian) on the Yangtze Platform, South China: Petrographic and geochemical constrains [J]. Marine and Petroleum Geology, 2019, 100: 391-411. doi: 10.1016/j.marpetgeo.2018.10.022
|
[4] |
陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7
CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.
|
[5] |
袁勇, 陈建文, 张银国, 等. 南黄海盆地崂山隆起海相中—古生界构造地质特征[J]. 海洋地质前沿, 2016, 32(1):48-53
YUAN Yong, CHEN Jianwen, ZHANG Yinguo, et al. Geotectonic features of the marine Mesozoic-Paleozoic on the Laoshan uplift of the South Yellow Sea basin [J]. Marine Geology Frontiers, 2016, 32(1): 48-53.
|
[6] |
陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23
CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resource ssurvey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.
|
[7] |
CHEN Jianwen, XU Ming, LEI Baohua, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019, 2(1): 67-84.
|
[8] |
陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29
CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.
|
[9] |
Yuan Y, Chen J W, Zhang Y X, et al. Tectonic evolution and geological characteristics of hydrocarbon reservoirs in marine mesozoic-paleozoic strata in the South Yellow Sea basin [J]. Journal of Ocean University of China, 2018, 17(5): 1075-1090. doi: 10.1007/s11802-018-3583-x
|
[10] |
Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian Explosion [J]. Gondwana Research, 2008, 14(1-2): 193-208. doi: 10.1016/j.gr.2007.10.008
|
[11] |
Zhu B, Jiang S Y, Yang J H, et al. Rare earth element and SrNd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan province, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 132-143. doi: 10.1016/j.palaeo.2013.10.002
|
[12] |
Brasier M D, Corfield R M, Derry L A, et al. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia [J]. Geology, 1994, 22(5): 455-458. doi: 10.1130/0091-7613(1994)022<0455:MCESTC>2.3.CO;2
|
[13] |
Li D, Ling H F, Shields-Zhou G A, et al. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: evidence from the Xiaotan section, NE Yunnan, South China [J]. Precambrian Research, 2013, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002
|
[14] |
Shen Y A, Schidlowski M. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations [J]. Geology, 2000, 28(7): 623-626. doi: 10.1130/0091-7613(2000)28<623:NCISFS>2.0.CO;2
|
[15] |
Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in phanerozoic and precambrian supercontinents [J]. Earth-Science Reviews, 2018, 186: 173-194. doi: 10.1016/j.earscirev.2017.06.001
|
[16] |
Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003
|
[17] |
Zhao X K, Wang X Q, Shi X Y, et al. Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 86-103. doi: 10.1016/j.palaeo.2018.05.009
|
[18] |
Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up [J]. Precambrian Research, 2003, 122(1-4): 141-158. doi: 10.1016/S0301-9268(02)00209-7
|
[19] |
Amthor J E, Grotzinger J P, Schröder S, et al. Extinction of Cloudina and namacalathus at the Precambrian-Cambrian boundary in Oman [J]. Geology, 2003, 31(5): 431-434. doi: 10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2
|
[20] |
Marshall C R. Explaining the Cambrian ‘‘explosion" of animals [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 355-384. doi: 10.1146/annurev.earth.33.031504.103001
|
[21] |
郭令智. 华南板块构造[M]. 北京: 地质出版社, 2001: 1-264
GUO Lingzhi. The Plate Tectonics of South China[M]. Beijing: Geological Publishing House, 2001: 1-264. ]
|
[22] |
舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7):1035-1053 doi: 10.3969/j.issn.1671-2552.2012.07.003
SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block [J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
|
[23] |
刘宝珺, 许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京: 科学出版社, 1994: 1-239
LIU Baojun, XU Xiaosong. Lithofacies Palaeogeography atlas of South China (Sinian-Triassic)[M]. Beijing: Science Press, 1994: 1-239. ]
|
[24] |
丘元禧. 雪峰山的构造性质与演化: 一个陆内造山带的形成演化模式[M]. 北京: 地质出版社, 1999: 1-555
QIU Yuanxi. The Tectonic Nature and Evolution of Xuefeng Mountains: A Model for the Formation and Evolution of An Intracontinental Orogenic Belt[M]. Beijing: Geological Publishing House, 1994: 1-239. ]
|
[25] |
马力, 陈焕疆, 甘克文, 等. 中国南方大地构造和海相油气地质[M]. 北京: 地质出版社, 2004: 1-452
MA Li, CHEN Huanjiang, GAN Kewen, et al. Tectonics and Marine Petroleum Geology in Southern China[M]. Beijing: Geological Publishing House, 2004: 1-452. ]
|
[26] |
陈洪德, 侯明才, 许效松, 等. 加里东期华南的盆地演化与层序格架[J]. 成都理工大学学报:自然科学版, 2006, 33(1):1-8
CHEN Hongde, HOU Mingcai, XU Xiaosong, et al. Tectonic evolution and sequence stratigraphic framework in South China during Caledonian [J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2006, 33(1): 1-8.
|
[27] |
Veizer J, Jansen S L. Basement and sedimentary recycling and continental evolution [J]. The Journal of Geology, 1979, 87(4): 341-370. doi: 10.1086/628425
|
[28] |
Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
|
[29] |
Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3
|
[30] |
Wronkiewicz D J, Condie K C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2401-2416. doi: 10.1016/0016-7037(87)90293-6
|
[31] |
Johnsson M J, Stallard R F, Meade R H. First-cycle quartz arenites in the Orinoco River basin, Venezuela and Colombia [J]. The Journal of Geology, 1988, 96(3): 263-277. doi: 10.1086/629219
|
[32] |
Nesbitt H W, Macrae N D, Kronberg B I. Amazon deep-sea fan muds: light REE enriched products of extreme chemical weathering [J]. Earth and Planetary Science Letters, 1990, 100(1-3): 118-123. doi: 10.1016/0012-821X(90)90180-6
|
[33] |
Xie G L, Shen Y L, Liu S G, et al. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate [J]. Marine and Petroleum Geology, 2018, 92: 20-36. doi: 10.1016/j.marpetgeo.2018.02.019
|
[34] |
Zhou L, Wang Z X, Gao W L, et al. Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze platform, South China: Implications for depositional setting of shales [J]. Geochemistry, 2019, 79(2): 384-398. doi: 10.1016/j.chemer.2019.05.001
|
[35] |
Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States [J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9
|
[36] |
Zhang L F, Sun M, Wang S G, et al. The composition of shales from the Ordos basin, China: effects of source weathering and diagenesis [J]. Sedimentary Geology, 1998, 116(1-2): 129-141. doi: 10.1016/S0037-0738(97)00074-2
|
[37] |
Lee Y I. Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: implications for provenance and source weathering at an active continental margin [J]. Sedimentary Geology, 2009, 215(1-4): 1-12. doi: 10.1016/j.sedgeo.2008.12.004
|
[38] |
Dickinson W R, Beard L S, Brakenridge G R. Provenance of North American Phanerozoic sandstones in relation to tectonic setting [J]. GSA Bulletin, 1983, 94(2): 222-235. doi: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
|
[39] |
Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data [J]. Chemical Geology, 1988, 67(1-2): 119-139. doi: 10.1016/0009-2541(88)90010-1
|
[40] |
McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
|
[41] |
McLennan S M, Hemming S R Taylor S R, et al. Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America [J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1153-1177. doi: 10.1016/0016-7037(95)00032-U
|
[42] |
Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292
|
[43] |
Xu Z Y, Jiang S, Yao G S, et al. Tectonic and depositional setting of the lower Cambrian and lower Silurian marine shales in the Yangtze Platform, South China: Implications for shale gas exploration and production [J]. Journal of Asian Earth Sciences, 2019, 170: 1-19. doi: 10.1016/j.jseaes.2018.10.023
|
[44] |
Steiner M, Wallis E, Erdtmann B D. Submarine hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3-4): 165-191. doi: 10.1016/S0031-0182(01)00208-5
|
[45] |
刘计勇, 张飞燕, 印燕铃. 下扬子下寒武统岩相古地理及烃源岩条件研究[J]. 海洋地质与第四纪地质, 2018, 38(3):85-95
LIU Jiyong, ZHANG Feiyan, YIN Yanling. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze region [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 85-95.
|
[46] |
Tao H F, Sun S, Wang Q C, et al. Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in Northeast Junggar, China: implications for provenance, source weathering, and tectonic setting [J]. Journal of Asian Earth Sciences, 2014, 87: 11-25. doi: 10.1016/j.jseaes.2014.02.007
|
[47] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
|
[48] |
Johnsson M J. Processes controlling the composition of clastic sediments [J]. Special Paper of the Geological Society of America, 1993, 284(3): 1-19.
|
[49] |
Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, et al. Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance [J]. Geochemistry, 2012, 72(4): 345-362. doi: 10.1016/j.chemer.2012.07.003
|
[50] |
Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
|
[51] |
Elderfield H, Greaves M J. The rare earth elements in seawater [J]. Nature, 1982, 296(5854): 214-219. doi: 10.1038/296214a0
|
[52] |
Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Pub, 1985.
|
[53] |
Murray R W, Ten Brink M R B, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale [J]. Geology, 1990, 18(3): 268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2
|
[54] |
Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
|
[55] |
Bock B, Mclennan S M, Hanson G N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England [J]. Sedimentology, 1998, 45(4): 635-655. doi: 10.1046/j.1365-3091.1998.00168.x
|
[56] |
Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios [J]. Chemical Geology, 2001, 181(1-4): 131-146. doi: 10.1016/S0009-2541(01)00278-9
|
[57] |
Meng Q T, Liu Z J, Bruch A A, et al. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China [J]. Journal of Asian Earth Sciences, 2012, 45: 95-105. doi: 10.1016/j.jseaes.2011.09.021
|
[58] |
Armstrong-Altrin J S, Machain-Castillo M L, Rosales-Hoz L, et al. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis [J]. Continental Shelf Research, 2015, 95: 15-26. doi: 10.1016/j.csr.2015.01.003
|
1. |
潘美慧,李娜,龚逸夫,陈晴,赵慧敏,王金雨. 甘肃青土湖地区不同类型沙丘的表沙理化特征及其环境意义. 海洋地质与第四纪地质. 2024(02): 69-80 .
![]() |