XU Ming, CHEN Jianwen, YUAN Yong, ZHANG Yinguo, LIANG Jie, LI Huijun, WANG Jianqiang, WU Shuyu. Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 82-90. DOI: 10.16562/j.cnki.0256-1492.2020101601
Citation: XU Ming, CHEN Jianwen, YUAN Yong, ZHANG Yinguo, LIANG Jie, LI Huijun, WANG Jianqiang, WU Shuyu. Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 82-90. DOI: 10.16562/j.cnki.0256-1492.2020101601

Sedimentary environment of the Lower Cambrian Mufushan Formation in the Lower Yangtze region: Evidence from whole-rock geochemistry

More Information
  • Received Date: October 15, 2020
  • Revised Date: August 09, 2021
  • Available Online: September 27, 2021
  • The Mufushan Formation of Lower Cambrian is the most significant hydrocarbon source rock for shale gas in the Yangtze Platform. No exploration breakthrough has been achieved so far in the Lower Yangtze area, compared to the Middle and Upper Yangtze areas. Recently, the well of GD-1 has been completed, for which the Early Cambrian Mufushan (MFS) Formation is completelyly cored. Geochemistry of calcareous/carbonaceous mudstone of Early Cambrian Mufushan (MFS) Formation are carefully investigated for paleo-environment, provenance and tectonic settings. The samples of MFS are characterized by enriched large ion lithophile elements and depleted high field strength elements and transition elements. The analysis results show that the total REE concentrations of MFS mudstones vary from 14.81 to 107.47 ug/g. The Chemical Index of Alteration (CIA) ranges from 64.84 to 78.81. And the A-CN-K plot indicate that the source rocks has undergone a moderate weathering. In the Th/Sc versus Zr/Sc plot, most samples are located in the area between basalt and felsic igneous rocks, with negligible sedimentary recycling. Both the Al2O3/TiO2 ratios and TiO2/Zr ratios indicate an intermediate-felsic igneous provenance. The Cr/V ratios and La/Th-Hf diagrams also suggest that most of the materials are derived from intermediate-felsic rocks.
  • [1]
    Zhou L, Kang Z H, Wang Z X, et al. Sedimentary geochemical investigation for Paleo environment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform [J]. Journal of Petroleum Science and Engineering, 2017, 159: 376-386. doi: 10.1016/j.petrol.2017.09.047
    [2]
    Li Y F, Fan T L, Zhang J C, et al. Geochemical changes in the Early Cambrian interval of the Yangtze Platform, South China: Implications for hydrothermal influences and paleocean redox conditions [J]. Journal of Asian Earth Sciences, 2015, 109: 100-123. doi: 10.1016/j.jseaes.2015.05.003
    [3]
    Ren Y, Zhong D K, Gao C L, et al. The paleoenvironmental evolution of the Cambrian Longwangmiao Formation (Stage 4, Toyonian) on the Yangtze Platform, South China: Petrographic and geochemical constrains [J]. Marine and Petroleum Geology, 2019, 100: 391-411. doi: 10.1016/j.marpetgeo.2018.10.022
    [4]
    陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.
    [5]
    袁勇, 陈建文, 张银国, 等. 南黄海盆地崂山隆起海相中—古生界构造地质特征[J]. 海洋地质前沿, 2016, 32(1):48-53

    YUAN Yong, CHEN Jianwen, ZHANG Yinguo, et al. Geotectonic features of the marine Mesozoic-Paleozoic on the Laoshan uplift of the South Yellow Sea basin [J]. Marine Geology Frontiers, 2016, 32(1): 48-53.
    [6]
    陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resource ssurvey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.
    [7]
    CHEN Jianwen, XU Ming, LEI Baohua, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019, 2(1): 67-84.
    [8]
    陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29

    CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.
    [9]
    Yuan Y, Chen J W, Zhang Y X, et al. Tectonic evolution and geological characteristics of hydrocarbon reservoirs in marine mesozoic-paleozoic strata in the South Yellow Sea basin [J]. Journal of Ocean University of China, 2018, 17(5): 1075-1090. doi: 10.1007/s11802-018-3583-x
    [10]
    Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian Explosion [J]. Gondwana Research, 2008, 14(1-2): 193-208. doi: 10.1016/j.gr.2007.10.008
    [11]
    Zhu B, Jiang S Y, Yang J H, et al. Rare earth element and SrNd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan province, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 132-143. doi: 10.1016/j.palaeo.2013.10.002
    [12]
    Brasier M D, Corfield R M, Derry L A, et al. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia [J]. Geology, 1994, 22(5): 455-458. doi: 10.1130/0091-7613(1994)022<0455:MCESTC>2.3.CO;2
    [13]
    Li D, Ling H F, Shields-Zhou G A, et al. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: evidence from the Xiaotan section, NE Yunnan, South China [J]. Precambrian Research, 2013, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002
    [14]
    Shen Y A, Schidlowski M. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations [J]. Geology, 2000, 28(7): 623-626. doi: 10.1130/0091-7613(2000)28<623:NCISFS>2.0.CO;2
    [15]
    Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in phanerozoic and precambrian supercontinents [J]. Earth-Science Reviews, 2018, 186: 173-194. doi: 10.1016/j.earscirev.2017.06.001
    [16]
    Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003
    [17]
    Zhao X K, Wang X Q, Shi X Y, et al. Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 86-103. doi: 10.1016/j.palaeo.2018.05.009
    [18]
    Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up [J]. Precambrian Research, 2003, 122(1-4): 141-158. doi: 10.1016/S0301-9268(02)00209-7
    [19]
    Amthor J E, Grotzinger J P, Schröder S, et al. Extinction of Cloudina and namacalathus at the Precambrian-Cambrian boundary in Oman [J]. Geology, 2003, 31(5): 431-434. doi: 10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2
    [20]
    Marshall C R. Explaining the Cambrian ‘‘explosion" of animals [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 355-384. doi: 10.1146/annurev.earth.33.031504.103001
    [21]
    郭令智. 华南板块构造[M]. 北京: 地质出版社, 2001: 1-264

    GUO Lingzhi. The Plate Tectonics of South China[M]. Beijing: Geological Publishing House, 2001: 1-264. ]
    [22]
    舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7):1035-1053 doi: 10.3969/j.issn.1671-2552.2012.07.003

    SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block [J]. Geological Bulletin of China, 2012, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
    [23]
    刘宝珺, 许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京: 科学出版社, 1994: 1-239

    LIU Baojun, XU Xiaosong. Lithofacies Palaeogeography atlas of South China (Sinian-Triassic)[M]. Beijing: Science Press, 1994: 1-239. ]
    [24]
    丘元禧. 雪峰山的构造性质与演化: 一个陆内造山带的形成演化模式[M]. 北京: 地质出版社, 1999: 1-555

    QIU Yuanxi. The Tectonic Nature and Evolution of Xuefeng Mountains: A Model for the Formation and Evolution of An Intracontinental Orogenic Belt[M]. Beijing: Geological Publishing House, 1994: 1-239. ]
    [25]
    马力, 陈焕疆, 甘克文, 等. 中国南方大地构造和海相油气地质[M]. 北京: 地质出版社, 2004: 1-452

    MA Li, CHEN Huanjiang, GAN Kewen, et al. Tectonics and Marine Petroleum Geology in Southern China[M]. Beijing: Geological Publishing House, 2004: 1-452. ]
    [26]
    陈洪德, 侯明才, 许效松, 等. 加里东期华南的盆地演化与层序格架[J]. 成都理工大学学报:自然科学版, 2006, 33(1):1-8

    CHEN Hongde, HOU Mingcai, XU Xiaosong, et al. Tectonic evolution and sequence stratigraphic framework in South China during Caledonian [J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2006, 33(1): 1-8.
    [27]
    Veizer J, Jansen S L. Basement and sedimentary recycling and continental evolution [J]. The Journal of Geology, 1979, 87(4): 341-370. doi: 10.1086/628425
    [28]
    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
    [29]
    Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3
    [30]
    Wronkiewicz D J, Condie K C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2401-2416. doi: 10.1016/0016-7037(87)90293-6
    [31]
    Johnsson M J, Stallard R F, Meade R H. First-cycle quartz arenites in the Orinoco River basin, Venezuela and Colombia [J]. The Journal of Geology, 1988, 96(3): 263-277. doi: 10.1086/629219
    [32]
    Nesbitt H W, Macrae N D, Kronberg B I. Amazon deep-sea fan muds: light REE enriched products of extreme chemical weathering [J]. Earth and Planetary Science Letters, 1990, 100(1-3): 118-123. doi: 10.1016/0012-821X(90)90180-6
    [33]
    Xie G L, Shen Y L, Liu S G, et al. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate [J]. Marine and Petroleum Geology, 2018, 92: 20-36. doi: 10.1016/j.marpetgeo.2018.02.019
    [34]
    Zhou L, Wang Z X, Gao W L, et al. Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze platform, South China: Implications for depositional setting of shales [J]. Geochemistry, 2019, 79(2): 384-398. doi: 10.1016/j.chemer.2019.05.001
    [35]
    Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States [J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9
    [36]
    Zhang L F, Sun M, Wang S G, et al. The composition of shales from the Ordos basin, China: effects of source weathering and diagenesis [J]. Sedimentary Geology, 1998, 116(1-2): 129-141. doi: 10.1016/S0037-0738(97)00074-2
    [37]
    Lee Y I. Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: implications for provenance and source weathering at an active continental margin [J]. Sedimentary Geology, 2009, 215(1-4): 1-12. doi: 10.1016/j.sedgeo.2008.12.004
    [38]
    Dickinson W R, Beard L S, Brakenridge G R. Provenance of North American Phanerozoic sandstones in relation to tectonic setting [J]. GSA Bulletin, 1983, 94(2): 222-235. doi: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
    [39]
    Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data [J]. Chemical Geology, 1988, 67(1-2): 119-139. doi: 10.1016/0009-2541(88)90010-1
    [40]
    McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
    [41]
    McLennan S M, Hemming S R Taylor S R, et al. Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America [J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1153-1177. doi: 10.1016/0016-7037(95)00032-U
    [42]
    Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292
    [43]
    Xu Z Y, Jiang S, Yao G S, et al. Tectonic and depositional setting of the lower Cambrian and lower Silurian marine shales in the Yangtze Platform, South China: Implications for shale gas exploration and production [J]. Journal of Asian Earth Sciences, 2019, 170: 1-19. doi: 10.1016/j.jseaes.2018.10.023
    [44]
    Steiner M, Wallis E, Erdtmann B D. Submarine hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3-4): 165-191. doi: 10.1016/S0031-0182(01)00208-5
    [45]
    刘计勇, 张飞燕, 印燕铃. 下扬子下寒武统岩相古地理及烃源岩条件研究[J]. 海洋地质与第四纪地质, 2018, 38(3):85-95

    LIU Jiyong, ZHANG Feiyan, YIN Yanling. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze region [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 85-95.
    [46]
    Tao H F, Sun S, Wang Q C, et al. Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in Northeast Junggar, China: implications for provenance, source weathering, and tectonic setting [J]. Journal of Asian Earth Sciences, 2014, 87: 11-25. doi: 10.1016/j.jseaes.2014.02.007
    [47]
    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
    [48]
    Johnsson M J. Processes controlling the composition of clastic sediments [J]. Special Paper of the Geological Society of America, 1993, 284(3): 1-19.
    [49]
    Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, et al. Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance [J]. Geochemistry, 2012, 72(4): 345-362. doi: 10.1016/j.chemer.2012.07.003
    [50]
    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
    [51]
    Elderfield H, Greaves M J. The rare earth elements in seawater [J]. Nature, 1982, 296(5854): 214-219. doi: 10.1038/296214a0
    [52]
    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Pub, 1985.
    [53]
    Murray R W, Ten Brink M R B, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale [J]. Geology, 1990, 18(3): 268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2
    [54]
    Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
    [55]
    Bock B, Mclennan S M, Hanson G N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England [J]. Sedimentology, 1998, 45(4): 635-655. doi: 10.1046/j.1365-3091.1998.00168.x
    [56]
    Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios [J]. Chemical Geology, 2001, 181(1-4): 131-146. doi: 10.1016/S0009-2541(01)00278-9
    [57]
    Meng Q T, Liu Z J, Bruch A A, et al. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China [J]. Journal of Asian Earth Sciences, 2012, 45: 95-105. doi: 10.1016/j.jseaes.2011.09.021
    [58]
    Armstrong-Altrin J S, Machain-Castillo M L, Rosales-Hoz L, et al. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis [J]. Continental Shelf Research, 2015, 95: 15-26. doi: 10.1016/j.csr.2015.01.003
  • Cited by

    Periodical cited type(1)

    1. 潘美慧,李娜,龚逸夫,陈晴,赵慧敏,王金雨. 甘肃青土湖地区不同类型沙丘的表沙理化特征及其环境意义. 海洋地质与第四纪地质. 2024(02): 69-80 . 本站查看

    Other cited types(0)

Catalog

    Article views (1947) PDF downloads (45) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return