GAN Yu, MA Xiaochuan, LUAN Zhendong, SONG Yongdong, XU Tao, ZHANG Jianxing, YAN Jun. Multiscale topographic features of the seamounts in the Yap-Caroline area of West Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 125-137. DOI: 10.16562/j.cnki.0256-1492.2020073101
Citation: GAN Yu, MA Xiaochuan, LUAN Zhendong, SONG Yongdong, XU Tao, ZHANG Jianxing, YAN Jun. Multiscale topographic features of the seamounts in the Yap-Caroline area of West Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 125-137. DOI: 10.16562/j.cnki.0256-1492.2020073101

Multiscale topographic features of the seamounts in the Yap-Caroline area of West Pacific

More Information
  • Received Date: July 30, 2020
  • Revised Date: January 12, 2021
  • Available Online: February 28, 2021
  • Multiscale topography of seamounts is helpful for understanding the geomorphic processes on different scales in the formation and evolution of seamounts and may provide clues for the study on geodynamic processes relating to plate subduction. Based on the high-resolution bathymetric data of Yap-Caroline area collected by R/V “Kexue” of the Institute of Oceanology, Chinese Academy of Sciences, the morphologic features and surface roughness of 42 seamounts in the study area have been analyzed by statistical methods, with focuses on the phenomenon and genesis of multiscale features of seamounts. The result demonstrates that the morphologic parameters and multiscale features of seamounts in different tectonic environments vary significantly. Seamounts in the Parece Vela Basin have larger height-to-basal-radius ratio and smaller flatness than those in the Sorol Trough. Different linear relationships between morphologic parameters imply that seamounts in the two regions have undergone different morphologic evolution processes. Multiscale analysis results suggest that the amplitudes of large characteristic scale (6~14 km) of seamounts in the Parece Vela Basin is not significant, and small-scale geomorphological processes have greater influence on the modification of seamount landscapes in this region. The linear relationship between roughness and volume of seamounts in the Sorol Trough might result from the discrepancy in formation times. Seamounts formed earlier have gone through more tectonic activities and small-scale geomorphologic processes, which resulted in rougher surface characteristics.
  • [1]
    Hess H H. Drowned ancient islands of the Pacific Basin [J]. American Journal of Science, 1946, 244(11): 772-791. doi: 10.2475/ajs.244.11.772
    [2]
    Menard G. Marine Geology of the Pacific[M]. New York: McGraw-Hill, 1964.
    [3]
    IHO. Standardization of Undersea Feature Names: Guidelines Proposal form Terminology[M]. 4th ed. Monaco: International Hydrographic Organisation and Intergovernmental Oceanographic Commission, 2008.
    [4]
    Staudigel H, Clague D A. The geological history of deep-sea volcanoes: Biosphere, hydrosphere, and lithosphere interactions [J]. Oceanography, 2010, 23(1): 58-71. doi: 10.5670/oceanog.2010.62
    [5]
    Kim S S, Wessel P. New global seamount census from altimetry-derived gravity data [J]. Geophysical Journal International, 2011, 186(2): 615-631. doi: 10.1111/j.1365-246X.2011.05076.x
    [6]
    Batiza R, Vanko D. Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific Rise inferred from narrow-beam echo-sounder surveys [J]. Marine Geology, 1983, 54(1-2): 53-90. doi: 10.1016/0025-3227(83)90008-7
    [7]
    Smith D K. Shape analysis of Pacific seamounts [J]. Earth and Planetary Science Letters, 1988, 90(4): 457-466. doi: 10.1016/0012-821X(88)90143-4
    [8]
    Passaro S, Milano G, D'Isanto C, et al. DTM-based morphometry of the Palinuro seamount (Eastern Tyrrhenian Sea): Geomorphological and volcanological implications [J]. Geomorphology, 2010, 115(1-2): 129-140. doi: 10.1016/j.geomorph.2009.09.041
    [9]
    Palomino D, Vázquez J T, Somoza L, et al. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts [J]. Geomorphology, 2016, 255: 125-139. doi: 10.1016/j.geomorph.2015.12.016
    [10]
    Bijesh C M, Kurian P J, Yatheesh V, et al. Morphotectonic characteristics, distribution and probable genesis of bathymetric highs off southwest coast of India [J]. Geomorphology, 2018, 315: 33-44. doi: 10.1016/j.geomorph.2018.04.015
    [11]
    Spatola D, Micallef A, Sulli A, et al. The Graham Bank (Sicily Channel, central Mediterranean Sea): Seafloor signatures of volcanic and tectonic controls [J]. Geomorphology, 2018, 318: 375-389. doi: 10.1016/j.geomorph.2018.07.006
    [12]
    Micallef A, Krastel S, Savini A. Submarine Geomorphology[M]. Cham: Springer, 2018.
    [13]
    Hubbard B, Siegert M J, Mccarroll D. Spectral roughness of glaciated bedrock geomorphic surfaces: Implications for glacier sliding [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21295-21304. doi: 10.1029/2000JB900162
    [14]
    Lyons A P, Fox W L J, Hasiotis T, et al. Characterization of the two-dimensional roughness of wave-rippled sea floors using digital photogrammetry [J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 515-524. doi: 10.1109/JOE.2002.1040935
    [15]
    Perron J T, Kirchner J W, Dietrich W E. Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes [J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F4).
    [16]
    Smith M W. Roughness in the Earth Sciences [J]. Earth-Science Reviews, 2014, 136: 202-225. doi: 10.1016/j.earscirev.2014.05.016
    [17]
    Shepard M K, Campbell B A. Radar scattering from a self-affine fractal surface: Near-nadir regime [J]. Icarus, 1999, 141(1): 156-171. doi: 10.1006/icar.1999.6141
    [18]
    Bomberger C, Bendick R, Flesch L, et al. Spatial scales in topography and strain rate magnitude in the western United States [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 6086-6097. doi: 10.1029/2018JB016135
    [19]
    Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis [J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8
    [20]
    Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction [J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003
    [21]
    Weissel J K, Anderson R N. Is there a Caroline plate? [J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3
    [22]
    Dong D D, Zhang Z Y, Bai Y L, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction [J]. Tectonophysics, 2018, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030
    [23]
    Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504
    [24]
    Wang Q, Liu F, Zhang D C. Pelagihabitans pacificus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a deep-sea seamount [J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(8): 4569-4575. doi: 10.1099/ijsem.0.004315
    [25]
    Zhang Z Y, Dong D D, Sun W D, et al. Subduction erosion, crustal structure, and an evolutionary model of the northern yap subduction zone: new observations from the latest geophysical survey [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 166-182. doi: 10.1029/2018GC007751
    [26]
    宫士奇. 雅浦海山区海底地形及海山形态特征研究与分析[D]. 中国科学院研究生院 (海洋研究所)硕士学位论文, 2016.

    GONG Shiqi. Topographic and geomorphophic features and analysis of seafloor and seamounts in the Yap seamounts area[D]. Master Dissertation of University of Chinese Academy of Sciences (Institute of Oceanology), 2016.
    [27]
    Magee C, Hunt-Stewart E, Jackson C A L. Volcano growth mechanisms and the role of sub-volcanic intrusions: Insights from 2D seismic reflection data [J]. Earth and Planetary Science Letters, 2013, 373: 41-53. doi: 10.1016/j.jpgl.2013.04.041
    [28]
    Shepard M K, Campbell B A, Bulmer M H, et al. The roughness of natural terrain: A planetary and remote sensing perspective [J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32777-32795. doi: 10.1029/2000JE001429
    [29]
    Xu T B, Moore I D, Gallant J C. Fractals, fractal dimensions and landscapes-a review [J]. Geomorphology, 1993, 8(4): 245-262. doi: 10.1016/0169-555X(93)90022-T
    [30]
    Liucci L, Melelli L. The fractal properties of topography as controlled by the interactions of tectonic, lithological, and geomorphological processes [J]. Earth Surface Processes and Landforms, 2017, 42(15): 2585-2598. doi: 10.1002/esp.4206
    [31]
    Black B A, Perron J T, Hemingway D, et al. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan [J]. Science, 2017, 356(6339): 727-731. doi: 10.1126/science.aag0171
    [32]
    Leon J X, Roelfsema C M, Saunders M I, et al. Measuring coral reef terrain roughness using ‘Structure-from-Motion’ close-range photogrammetry [J]. Geomorphology, 2015, 242: 21-28. doi: 10.1016/j.geomorph.2015.01.030
    [33]
    Annen C, Lénat J F, Provost A. The long-term growth of volcanic edifices: numerical modelling of the role of dyke intrusion and lava-flow emplacement [J]. Journal of Volcanology and Geothermal Research, 2001, 105(4): 263-289. doi: 10.1016/S0377-0273(00)00257-2
    [34]
    Dobbs S C, Mchargue T, Malkowski M A, et al. Are submarine and subaerial drainages morphologically distinct? [J]. Geology, 2019, 47(11): 1093-1097. doi: 10.1130/G46329.1
    [35]
    Smith M E, Finnegan N J, Mueller E R, et al. Durable terrestrial bedrock predicts submarine canyon formation [J]. Geophysical Research Letters, 2017, 44(20): 10332-10340. doi: 10.1002/2017GL075139
    [36]
    Sun Q J, Magee C, Jackson C A L, et al. How do deep-water volcanoes grow? [J]. Earth and Planetary Science Letters, 2020, 542: 116320. doi: 10.1016/j.jpgl.2020.116320
    [37]
    Smith D K. Comparison of the shapes and sizes of seafloor volcanoes on Earth and “pancake” domes on Venus [J]. Journal of Volcanology and Geothermal Research, 1996, 73(1-2): 47-64. doi: 10.1016/0377-0273(96)00007-8
    [38]
    Castruccio A, Diez M, Gho R. The influence of plumbing system structure on volcano dimensions and topography [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 8839-8859. doi: 10.1002/2017JB014855
    [39]
    Beccaluva L, Serri G, Dostal J. Geochemistry of volcanic rocks from the mariana, yap and palau trenches bearing on the tectono-magmatic evolution of the mariana trench-arc-backarc system [J]. Developments in Geotectonics, 1986, 21: 481-508.
    [40]
    Zhang Z Y, Dong D D, Sun W D, et al. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate, western Pacific [J]. International Geology Review, 2020, 63(2): 193-207.
    [41]
    Xia C L, Zheng Y P, Liu B H, et al. Geological and geophysical differences between the north and south sections of the Yap trench-arc system and their relationship with Caroline Ridge subduction [J]. Geological Journal, 2020, 55(12): 7775-7789. doi: 10.1002/gj.3903
    [42]
    Crawford A J, Beccaluva L, Serri G, et al. Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches [J]. Earth and Planetary Science Letters, 1986, 80(3-4): 265-280. doi: 10.1016/0012-821X(86)90110-X
    [43]
    Calves G, Schwab A M, Huuse M, et al. Seismic volcano stratigraphy of the western Indian rifted margin: The pre‐deccan igneous province [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01101.
    [44]
    Rossi M J. Morphology and mechanism of eruption of postglacial shield volcanoes in Iceland [J]. Bulletin of Volcanology, 1996, 57(7): 530-540. doi: 10.1007/BF00304437
    [45]
    McGuire W J. Volcano instability: A review of contemporary themes [J]. Geological Society, London, Special Publications, 1996, 110(1): 1-23. doi: 10.1144/GSL.SP.1996.110.01.01
    [46]
    Duvall M S, Hench J L, Rosman J H. Collapsing complexity: quantifying multiscale properties of reef topography [J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5021-5038. doi: 10.1029/2018JC014859
    [47]
    Grohmann C H, Smith M J, Riccomini C. Multiscale analysis of topographic surface roughness in the midland valley, scotland [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1200-1213. doi: 10.1109/TGRS.2010.2053546
    [48]
    Crossingham T J, Vasconcelos P M, Cunningham T, et al. 40Ar/39Ar geochronology and volume estimates of the Tasmantid Seamounts: Support for a change in the motion of the Australian plate [J]. Journal of Volcanology and Geothermal Research, 2017, 343: 95-108. doi: 10.1016/j.jvolgeores.2017.06.014
    [49]
    Knesel K M, Cohen B E, Vasconcelos P M, et al. Rapid change in drift of the Australian plate records collision with Ontong Java plateau [J]. Nature, 2008, 454(7205): 754-757. doi: 10.1038/nature07138
  • Related Articles

    [1]LIU Jia, LI Panfeng, XING Lei, HU Bangqi, YANG Huiliang, ZHAO Jingtao. Morphological characteristics and geological significance of seamounts in the southern Kyushu-Palau Ridge areas[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 65-77. DOI: 10.16562/j.cnki.0256-1492.2023021701
    [2]HUANG Wei, HU Bangqi, JIANG Xuejun, LU Jingfang, HOU Fanghui, CUI Ruyong, LI Panfeng. Variations in content of Si, Al, and Ca during the growth of ferromanganese crusts on the 13°20′N seamount of Kyushu-Palau Ridge and indication to the supply of detrital materials[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 26-35. DOI: 10.16562/j.cnki.0256-1492.2023070402
    [3]DONG Dongdong, ZHANG Zhengyi, FAN Jianke, LI Cuilin, ZHANG Guangxu, YANG Liu. Tectonic evolution and drilling proposal of the subduction system of the Caroline Ridge − An oceanic plateau in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 178-186. DOI: 10.16562/j.cnki.0256-1492.2022062905
    [4]ZHANG Guoliang. Origin of the Caroline Seamount Chain and an ocean drilling proposal to test the mantle plume hypothesis[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 172-177. DOI: 10.16562/j.cnki.0256-1492.2022072401
    [5]ZHANG Zhen, LI Sanzhong. Tectonic evolution of the Yap trench-arc system[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 138-146. DOI: 10.16562/j.cnki.0256-1492.2019090301
    [6]LI Chunfeng, LI Gang, LI Zilong, LIU Wenxiao, ZHANG Lulu, LU Zhezhe, CHEN Xuegang, YAO Zewei. Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 87-97. DOI: 10.16562/j.cnki.0256-1492.2019031501
    [7]ZHANG Ji, ZHANG Guoliang. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 71-82. DOI: 10.16562/j.cnki.0256-1492.2018.04.006
    [8]ZHANG Zhengyi, DONG Dongdong, ZHANG Guangxu, ZHANG Guoliang. TOPOGRAPHIC CONSTRAINTS ON THE SUBDUCTION EROSION OF THE YAP ARC, WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 41-50. DOI: 10.16562/j.cnki.0256-1492.2017.01.005
    [9]DONG Dongdong, ZHANG Guangxu, QIAN Jin, FAN Jianke, ZHANG Zhengyi, ZHANG Guoliang. GEOMORPHOLOGY AND STRATIGRAPHIC FRAMEWORK OF THE YAP SUBDUCTION ZONE, WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 23-29. DOI: 10.16562/j.cnki.0256-1492.2017.01.003
    [10]SONG Yongdong, MA Xiaochuan, ZHANG Guangxu, LIU Xiansan, LUAN Zhendong, DONG Dongdong, YAN Jun. HEAT FLOW IN-SITU MEASUREMENT AT YAP TRENCH OF THE WESTERN PACIFIC[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 51-56. DOI: 10.16562/j.cnki.0256-1492.2016.04.006
  • Cited by

    Periodical cited type(13)

    1. 李式洋. 无人艇在海上勘探地震采集中的应用. 中国石油和化工标准与质量. 2025(06): 151-153 .
    2. 李天光,郑江龙,李林伟,江彪,谢晋兴,黄晓鑫,孟凡盛,惠格格,黄逸凡. 无人艇载单道地震系统集成与海试验证. 地球物理学进展. 2024(02): 878-884 .
    3. 陈超,张洪星,张海涛,钱建华. 多方法协同的水下排污口排查技术体系应用. 环境工程. 2024(05): 139-146 .
    4. 陈志坚,万芃,李勇航,李斌,李瑞铿,潘宝华. 水面无人艇侧扫声纳技术在人工鱼礁调查中的应用. 珠江水运. 2024(12): 17-20 .
    5. 邹烨杰,李大军. 基于无人艇多波束测深系统的浅海水下地形自动化全覆盖测量. 江西测绘. 2023(02): 8-11+36 .
    6. 刘玉斌,张建兴,宋永东,张毅涵,栾振东. 基于相位差测深声呐(PDBS)技术的莱州湾人工鱼礁探测. 海洋科学. 2023(10): 76-86 .
    7. 夏雨,刘凯. 无人艇在海底电缆声学二次定位中的应用技术与前景分析. 中国石油和化工标准与质量. 2022(07): 188-190 .
    8. 汪连贺. 无人艇组网测量应用场景研究及精度分析. 海洋测绘. 2022(03): 48-51+65 .
    9. 徐杰. 虚拟现实技术在航海模拟器海底视景中的应用. 舰船科学技术. 2021(12): 49-51 .
    10. 王伟平,何西,董超,郑兵,李雪. 海洋探测无人艇:平台设计及应用. 电信科学. 2021(07): 40-47 .
    11. 李勇航,韦成府,李瑞铿,傅晓洲,杨江平,利明泽. 无人机与无人艇在海南东锣岛水上水下地貌联合调查中的应用. 海洋地质前沿. 2021(08): 80-88 .
    12. 李勇航,牟泽霖,刘文涛,温明明,倪玉根,单晨晨,潘冬阳. 海南海棠湾海底微地貌多源声学特征、成因及其指示意义. 地球物理学进展. 2021(04): 1694-1701 .
    13. 李勇航,贾磊,倪玉根,何健,牟泽霖,温明明,单晨晨. 中国台湾浅滩海砂砂体的地球物理特征及有利赋存标志. 热带海洋学报. 2021(05): 101-110 .

    Other cited types(3)

Catalog

    Article views (1882) PDF downloads (62) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return