Citation: | MA Xiaoli, LIU Lihua, WEI Xueqin, ZHAI Mengyue, YU Juan. Geochemical characteristics and source of pore fluids of the mud volcanoes in Shin-yan-ny-hu, Taiwan, China[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 71-81. DOI: 10.16562/j.cnki.0256-1492.2020061501 |
[1] |
Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
|
[2] |
Dimitrov L I. Mud volcanoes-the most important pathway for degassing deeply buried sediments [J]. Earth-Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7
|
[3] |
Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 1005. doi: 10.1029/2000RG000093
|
[4] |
Kholodov V N. Mud volcanoes, their distribution regularities and genesis: communication 1. mud volcanic provinces and morphology of mud volcanoes [J]. Lithology and Mineral Resources, 2002, 37(3): 197-209. doi: 10.1023/A:1015425612749
|
[5] |
Mazzini A, Etiope G. Mud volcanism: an updated review [J]. Earth-Science Reviews, 2017, 168: 81-112. doi: 10.1016/j.earscirev.2017.03.001
|
[6] |
Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean [J]. Geophysical Research Letters, 2003, 30(2): 1037.
|
[7] |
Etiope G, Milkov A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere [J]. Environmental Geology, 2004, 46(8): 997-1002. doi: 10.1007/s00254-004-1085-1
|
[8] |
Chao H C, You C F, Sun C H. Gases in Taiwan mud volcanoes: chemical composition, methane carbon isotopes, and gas fluxes [J]. Applied Geochemistry, 2010, 25(3): 428-436. doi: 10.1016/j.apgeochem.2009.12.009
|
[9] |
Dia A N, Castrec-Rouelle M, Boulègue J, et al. Trinidad mud volcanoes: where do the expelled fluids come from? [J]. Geochimica et Cosmochimica Acta, 1999, 63(7-8): 1023-1038. doi: 10.1016/S0016-7037(98)00309-3
|
[10] |
Martin J B, Kastner M, Henry P, et al. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B9): 20325-20345. doi: 10.1029/96JB00140
|
[11] |
Chao H C, You C F, Liu H C, et al. The origin and migration of mud volcano fluids in Taiwan: evidence from hydrogen, oxygen, and strontium isotopic compositions [J]. Geochimica et Cosmochimica Acta, 2013, 114: 29-51. doi: 10.1016/j.gca.2013.03.035
|
[12] |
Babadi M F, Mehrabi B, Tassi F, et al. Origin of fluids discharged from mud volcanoes in SE Iran [J]. Marine and Petroleum Geology, 2019, 106: 190-205. doi: 10.1016/j.marpetgeo.2019.05.005
|
[13] |
Planke S, Svensen H, Hovland M, et al. Mud and fluid migration in active mud volcanoes in Azerbaijan [J]. Geo-Marine Letters, 2003, 23(3-4): 258-268. doi: 10.1007/s00367-003-0152-z
|
[14] |
Teng L S. Geotectonic evolution of late cenozoic arc-continent collision in Taiwan [J]. Tectonophysics, 1990, 183(1-4): 57-76. doi: 10.1016/0040-1951(90)90188-E
|
[15] |
Shih T T. A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud [J]. Petrol Geol Taiwan, 1967, 5: 259-310.
|
[16] |
Sung Q C, Chang H C, Liu H C, et al. Mud volcanoes along the Chishan fault in Southwestern Taiwan: a release bend model [J]. Geomorphology, 2010, 118(1-2): 188-198. doi: 10.1016/j.geomorph.2009.12.018
|
[17] |
Chang P Y, Chang S K, Liu H C, et al. Using integrated 2D and 3D resistivity imaging methods for illustrating the mud-fluid conduits of the Wushanting mud volcanoes in Southwestern Taiwan [J]. Terrestrial Atmospheric and Oceanic Sciences, 2011, 22(1): 1-14. doi: 10.3319/TAO.2010.06.28.01(TT)
|
[18] |
Yang T F, Yeh G H, Fu C C, et al. Composition and exhalation flux of gases from mud volcanoes in Taiwan [J]. Environmental Geology, 2004, 46(8): 1003-1011. doi: 10.1007/s00254-004-1086-0
|
[19] |
Sun C H, Chang S C, Kuo C L, et al. Origins of Taiwan's mud volcanoes: evidence from geochemistry [J]. Journal of Asian Earth Sciences, 2010, 37(2): 105-116. doi: 10.1016/j.jseaes.2009.02.007
|
[20] |
Chang Y H, Cheng T W, Lai W J, et al. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan [J]. Environmental Microbiology, 2012, 14(4): 895-908. doi: 10.1111/j.1462-2920.2011.02658.x
|
[21] |
Cheng T W, Chang Y H, Tang S L, et al. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano [J]. The ISME Journal, 2012, 6(12): 2280-2290. doi: 10.1038/ismej.2012.61
|
[22] |
Gieskes J M, You C F, Lee T, et al. Hydro-geochemistry of mud volcanoes in Taiwan [J]. Acta Geologica Taiwanica, 1992, 30: 79-88.
|
[23] |
Yeh G H, Yang T F, Chen J C, et al. Fluid geochemistry of mud volcanoes in Taiwan[C]//Martinelli G, Panahi B. Mud Volcanoes, Geodynamics and Seismicity. Netherlands: Springer, 2005: 227-237.
|
[24] |
Liu C C, Jean J S, Nath B, et al. Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: implications for water-sediment interaction and groundwater arsenic enrichment [J]. Applied Geochemistry, 2009, 24(9): 1793-1802. doi: 10.1016/j.apgeochem.2009.06.002
|
[25] |
You C F, Gieskes J M, Lee T, et al. Geochemistry of mud volcano fluids in the Taiwan accretionary prism [J]. Applied Geochemistry, 2004, 19(5): 695-707. doi: 10.1016/j.apgeochem.2003.10.004
|
[26] |
Suppe J. A retrodeformable cross section of northern Taiwan [J]. Proceedings-Geological Society of China, 1980, 23: 46-55.
|
[27] |
Lin A T, Watts A B, Hesselbo S P. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region [J]. Basin Research, 2003, 15(4): 453-478. doi: 10.1046/j.1365-2117.2003.00215.x
|
[28] |
Wang S, Shu M, Yang C. Morphological study of mud volcanoes on land in Taiwan [J]. Nat. Taiwan Museum, 1988, 31: 31-49.
|
[29] |
Chao H C, You C F, Wang B S, et al. Boron isotopic composition of mud volcano fluids: implications for fluid migration in shallow subduction zones [J]. Earth and Planetary Science Letters, 2011, 305(1-2): 32-44. doi: 10.1016/j.jpgl.2011.02.033
|
[30] |
Mazzini A, Svensen H, Planke S, et al. When mud volcanoes sleep: insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan [J]. Marine and Petroleum Geology, 2009, 26(9): 1704-1715. doi: 10.1016/j.marpetgeo.2008.11.003
|
[31] |
Dählmann A, De Lange G J. Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160 [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 377-391. doi: 10.1016/S0012-821X(03)00227-9
|
[32] |
Reitz A, Pape T, Haeckel M, et al. Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea [J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3250-3268. doi: 10.1016/j.gca.2011.03.018
|
[33] |
Wu J N. New data processing algorithm for marine heat flow and thermal modeling for Tsan-Yao mud volcano offshore SW Taiwan[D]. Taipei: Institute of Oceanography College of Science, National Taiwan University, 2016.
|
[34] |
Coplen T B, Hanshaw B B. Ultrafiltration by a compacted clay membrane-I. oxygen and hydrogen isotopic fractionation [J]. Geochimica et Cosmochimica Acta, 1973, 37(10): 2295-2310. doi: 10.1016/0016-7037(73)90105-1
|
[35] |
Rolfe P F, Aylmore L A G. Water and salt flow through compacted clays: I. Permeability of compacted illite and montmorillonite [J]. Soil Science Society of America Journal, 1977, 41(3): 489-495. doi: 10.2136/sssaj1977.03615995004100030011x
|
[36] |
Kastner M, Elderfield H, Martin J B. Fluids in convergent margins: what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? [J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences, 1991, 335(1638): 243-259. doi: 10.1098/rsta.1991.0045
|
[37] |
Savin S M, Epstein S. The oyxgen and hydrogen isotope geochemistry of ocean sediments and shales [J]. Geochimica et Cosmochimica Acta, 1970, 34(1): 43-63. doi: 10.1016/0016-7037(70)90150-X
|
[38] |
Capuano R M. The temperature dependence of hydrogen isotope fractionation between clay minerals and water: evidence from a geopressured system [J]. Geochimica et Cosmochimica Acta, 1992, 56(6): 2547-2554. doi: 10.1016/0016-7037(92)90208-Z
|
[39] |
Shanks III W C, Bohlke J K, Seal II R R. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. in Seafloor hydrothermal systems: Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph Series, 1995: 194-221.
|
[40] |
Chen N C, Yang T F, Hong W L, et al. Discharge of deeply rooted fluids from submarine mud volcanism in the Taiwan accretionary prism [J]. Scientific Reports, 2020, 10: 381. doi: 10.1038/s41598-019-57250-9
|
[41] |
Hupers A, Kopf A J. Effect of smectite dehydration on pore water geochemistry in the shallow subduction zone: an experimental approach [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q0AD26.
|
[42] |
Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport [J]. Marine Geology, 2010, 277(1-4): 48-60. doi: 10.1016/j.margeo.2010.08.010
|
[43] |
Moore J C, Vrolijk P. Fluids in accretionary prisms [J]. Reviews of Geophysics, 1992, 30(2): 113-135. doi: 10.1029/92RG00201
|
[44] |
Suess E, Von Huene R, Emeis K C, et al. Ocean drilling program Leg-112, peru continental margin: part 2, sedimentary history and diagenesis in a coastal upwelling environment [J]. Geology, 1988, 16(10): 939-943. doi: 10.1130/0091-7613(1988)016<0939:ODPLPC>2.3.CO;2
|
[45] |
Boles J R, Franks S G. Clay diagenesis in wilcox sandstones of southwest texas; implications of smectite diagenesis on sandstone cementation [J]. Journal of Sedimentary Research, 1979, 49(1): 55-70.
|
[46] |
Rozanski K, Araguás-Aguás L, Gonfiantini R. Isotopic patterns in modern global precipitation[M]//Stewart P K. Climate Change in Continental Isotopic Records. Washington DC: Geophysical Monograph Series, 1993, 76: 1-36.
|
[47] |
Wang C H, Kuo C H, Peng T R, et al. Isotope characteristics of Taiwan groundwaters [J]. Western Pacific Earth Sciences, 2001, 1(4): 415-428.
|
[48] |
Nath B, Berner Z, Chatterjee D, et al. Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: comparative geochemical profile and leaching study [J]. Applied Geochemistry, 2008, 23(5): 996-1011. doi: 10.1016/j.apgeochem.2007.11.017
|
[49] |
Liu C C, Maity J P, Jean J S, et al. Geochemical characteristics of the mud volcano fluids in Southwestern Taiwan and their possible linkage to elevated arsenic concentration in Chianan plain groundwater [J]. Environmental Earth Sciences, 2012, 66(5): 1513-1523. doi: 10.1007/s12665-011-1391-3
|
[50] |
Mazzini A, Svensen H, Akhmanov G G, et al. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 375-388. doi: 10.1016/j.jpgl.2007.07.001
|
[51] |
Sheppard S M F, Gilg H A. Stable isotope geochemistry of clay minerals [J]. Clay Minerals, 1996, 31(1): 1-24. doi: 10.1180/claymin.1996.031.1.01
|
[52] |
Haese R R, Hensen C, De Lange G J. Pore water geochemistry of eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin [J]. Marine Geology, 2006, 225(1-4): 191-208. doi: 10.1016/j.margeo.2005.09.001
|
[53] |
Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators [J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3
|
[54] |
Can I. A new improved Na/K geothermometer by artificial neural networks [J]. Geothermics, 2002, 31(6): 751-760. doi: 10.1016/S0375-6505(02)00044-5
|
[55] |
Hensen C, Wallmann K, Schmidt M, et al. Fluid expulsion related to mud extrusion off Costa Rica-a window to the subducting slab [J]. Geology, 2004, 32(3): 201-204. doi: 10.1130/G20119.1
|
[56] |
Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. mineralogical and chemical evidence [J]. GSA Bulletin, 1976, 87(5): 725-737. doi: 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2
|
[57] |
Rumble D, Ash J L, Wang P L, et al. Resolved measurements of 13CDH3 and 12CD2H2 from a mud volcano in Taiwan [J]. Journal of Asian Earth Sciences, 2018, 167: 218-221. doi: 10.1016/j.jseaes.2018.03.007
|
[58] |
Yeh H W. DH ratios and late-stage dehydration of shales during burial [J]. Geochimica et Cosmochimica Acta, 1980, 44(2): 341-352. doi: 10.1016/0016-7037(80)90142-8
|
1. |
王婷,邹春辉,毛龙江,周玉龙,莫多闻. 渤海湾西岸CZ01钻孔沉积物粒度端元分析及其气候—海平面变化响应. 古地理学报. 2022(06): 1224-1237 .
![]() | |
2. |
王兆夺,于东生,汪卫国,罗福生,杨金艳. 泉州湾表层沉积物粒度分形特征与沉积学关系研究. 海洋湖沼通报. 2021(05): 82-88 .
![]() |