XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020050801
Citation: XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020050801

Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input

More Information
  • Received Date: May 07, 2020
  • Revised Date: June 17, 2020
  • Available Online: December 17, 2020
  • Submarine mud volcanoes contribute carbon to the hydrosphere and the atmosphere by releasing methane-rich fluids, and researches on the temporal and spatial distribution of methane migration and chemical transportation at submarine mud volcanoes are the keys to understanding the processes mentioned above. In this paper, a large number of domestic and foreign literatures are systematically investigated, and the strong heterogeneity of methane leakage was recognized in the mud volcano systems. Methane emissions mainly occur during the eruption and dormant periods of mud volcanoes, and only a small amount of leakage occurs in extinct periods. In space, strong methane bubble leakages are usually developed around the centers of mud volcanos, and the chemical transportation efficiencies of methane are low in sediments; the leakages of methane and DIC controlled by fluid flow are mainly developed in the wings, where the rates of anaerobic oxidation of methane and the precipitation rate of authigenic carbonate are the highest. Shallow sediments have the strongest interception to carbon emission; both the intensity and the transportation rate of methane in the edge area are low, and hence a large area of DIC microleakage is developed. Globally, the carbon flux from submarine mud volcanos into shallow sediments is ca. 0.02 Pg C·a−1. The methane and DIC coming from sediments could cause seawater anoxia, acidification, and change air-sea carbon exchange fluxes, which may affect the ocean’s ability to absorb atmospheric carbon dioxide on millennium scale or even in a shorter time, and thus impacts on the global climate environment. In the future, accurate statistics on the number and eruption cycle of submarine mud volcanoes, and detailed investigations on the migration and transportation of methane in typical submarine mud volcanoes with different sizes and development stages, will be helpful to further accurately estimate their total carbon emissions, to study the impacts of bottom-up mud volcanoes’ carbon emissions on the marine carbon cycle, and to improve the marine carbon cycle model.
  • [1]
    Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 2-1-2-52.
    [2]
    Dimitrov L I. Mud volcanoes—the most important pathway for degassing deeply buried sediments [J]. Earth Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7
    [3]
    Zheng G D, Ma X X, Guo Z F, et al. Gas geochemistry and methane emission from Dushanzi mud volcanoes in the southern Junggar Basin, NW China [J]. Journal of Asian Earth Sciences, 2017, 149: 184-190. doi: 10.1016/j.jseaes.2017.08.023
    [4]
    Etiope G, Milkov A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere [J]. Environmental Geology, 2004, 46(8): 997-1002. doi: 10.1007/s00254-004-1085-1
    [5]
    马向贤, 郑国东, 郭正府, 等. 准噶尔盆地南缘独山子泥火山温室气体排放通量[J]. 科学通报, 2014, 59(32):3190-3196. [MA Xiangxian, ZHENG Guodong, GUO Zhengfu, et al. Estimation of greenhouse gas flux from mud volcanoes in the Dushanzi area, southern Junggar Basin of Northwest China [J]. Chinese Science Bulletin, 2014, 59(32): 3190-3196. doi: 10.1360/N972014-00361
    [6]
    陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3):483-489. [CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
    [7]
    何家雄, 祝有海, 翁荣南, 等. 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系[J]. 地球科学, 2010, 35(1):75-86. [HE Jiaxiong, ZHU Youhai, WENG Rongnan, et al. Characters of North-West Mud Diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas [J]. Earth Science, 2010, 35(1): 75-86.
    [8]
    阎贫, 王彦林, 郑红波, 等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报, 2014, 36(7):142-148. [YAN Pin, WANG Yanlin, ZHENG Hongbo, et al. Geophysical features of mud volcanoes in the waters southwest of the Dongsha islands [J]. Acta Oceanologica Sinica, 2014, 36(7): 142-148.
    [9]
    Xu C L, Sun Z L, Geng W, et al. Thermal recovery method of submarine gas hydrate based on a thermoelectric generator [J]. China Geology, 2018, 1(4): 568-569. doi: 10.31035/cg2018068
    [10]
    Sun Z L, Cao H, Geng W, et al. A three-dimensional environmental monitoring system for the production of marine gas hydrates [J]. China Geology, 2018, 1(4): 570-571. doi: 10.31035/cg2018066
    [11]
    Wallmann K, Drews M, Aloisi G, et al. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes [J]. Earth & Planetary Science Letters, 2006, 248(1-2): 545-560.
    [12]
    Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz [J]. Geochimica Et Cosmochimica Acta, 2006, 70(21): 5336-5355. doi: 10.1016/j.gca.2006.08.010
    [13]
    Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea [J]. Geological Journal, 2019, 54(1): 177-189. doi: 10.1002/gj.3168
    [14]
    Dupré S, Buffet G, Mascle J, et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys [J]. Marine Geophysical Research, 2008, 29(4): 275-290. doi: 10.1007/s11001-009-9063-3
    [15]
    de Beer D, Sauter E, Niemann H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano [J]. Limnology & Oceanography, 2006, 51(3): 1315-1331.
    [16]
    Hensen C, Nuzzo M, Hornibrook E, et al. Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint [J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1232-1248. doi: 10.1016/j.gca.2006.11.022
    [17]
    Mazzini A, Etiope G. Mud volcanism: An updated review [J]. Earth-Science Reviews, 2017, 168: 81-112. doi: 10.1016/j.earscirev.2017.03.001
    [18]
    ZHANG J, LEI H Y, CHEN Y, et al. Carbon and oxygen isotope composition of carbonate in bulk sediment in the southwest Taiwan Basin, South China Sea: methane hydrate decomposition history and its link to mud volcano eruption [J]. Marine & Petroleum Geology, 2018, 98: 687-696.
    [19]
    Yan P, Wang Y L, Liu J, et al. Discovery of the southwest Dongsha Island mud volcanoes amid the northern margin of the South China Sea [J]. Marine & Petroleum Geology, 2017, 88: 858-870.
    [20]
    Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007
    [21]
    Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 465-570.
    [22]
    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
    [23]
    冯东, 陈多福, 苏正, 等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1):26-32. [FEND Dong, CHEN Duofu, SU Zheng, et al. Characteristics of cold seep carbonates and microbial processes in gas seep system [J]. Geoscience, 2005, 19(1): 26-32. doi: 10.3969/j.issn.1000-8527.2005.01.004
    [24]
    Xu C L, Wu N Y, Sun Z L, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough [J]. Marine and Petroleum Geology, 2018, 98: 306-315. doi: 10.1016/j.marpetgeo.2018.08.021
    [25]
    Caprais J C, Lanteri N, Crassous P, et al. A new CALMAR benthic chamber operating by submersible: First application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea) [J]. Limnology & Oceanography Methods, 2010, 8(6): 304-312.
    [26]
    Sun M S, Zhang G L, Ma X, et al. Dissolved methane in the East China Sea: Distribution, seasonal variation and emission [J]. Marine Chemistry, 2018, 202: 12-26. doi: 10.1016/j.marchem.2018.03.001
    [27]
    孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学报, 2016, 35(3):442-450. [SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450.
    [28]
    Judd A, Hovland M. Seabed Fluid Flow—the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2007:195-205.
    [29]
    Milkov A V, Vogt P R, Crane K, et al. Geological, geochemical, and microbial processes at the hydrate-bearing Hakon Mosby mud volcano: a review [J]. Chemical Geology, 2004, 205(3-4): 347-366. doi: 10.1016/j.chemgeo.2003.12.030
    [30]
    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth & Planetary Science Letters, 2006, 243(3-4): 354-365.
    [31]
    Felden J, Wenzhöfer F, Feseker T, et al. Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby Mud Volcano (HMMV) [J]. Limnology & Oceanography, 2010, 55(6): 2366-2380.
    [32]
    Bohrmann G, Torres M E. Gas hydrates in marine sediments[M]//Schulz H, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer-Verlag, 2006: 481-512.
    [33]
    Lichtschlag A, Felden J, Wenzhöfer F, et al. Methane and sulfide fluxes in permanent anoxia: in situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5002-5018. doi: 10.1016/j.gca.2010.05.031
    [34]
    Linke P, Wallmann K, Suess E, et al. In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin [J]. Earth & Planetary Science Letters, 2005, 235(1-2): 79-95.
    [35]
    Vanneste H, Kelly-Gerreyn B A, Connelly D P, et al. Spatial variation in fluid flow and geochemical fluxes across the sediment–seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz) [J]. Geochimica Et Cosmochimica Acta, 2011, 75(4): 1124-1144. doi: 10.1016/j.gca.2010.11.017
    [36]
    Sommer S, Linke P, Pfannkuche O, et al. Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz) [J]. Marine Ecology Progress Series, 2009, 382: 69-86. doi: 10.3354/meps07956
    [37]
    Praeg D, Ceramicola S, Barbieri R, et al. Tectonically-driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea [J]. Marine & Petroleum Geology, 2009, 26(9): 1849-1865.
    [38]
    Toyos M H, Medialdea T, León R, et al. Evidence of episodic long-lived eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes, Gulf of Cádiz [J]. Geo Marine Letters, 2016, 36(3): 197-214. doi: 10.1007/s00367-016-0440-z
    [39]
    黄华谷, 邸鹏飞, 陈多福. 泥火山的全球分布和研究进展[J]. 矿物岩石地球化学通报, 2011, 30(2):189-197. [HUANG Huagu, DI Pengfei, CHEN Duofu. Global distribution and research progress of mud volcanoes [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2): 189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010
    [40]
    Deville E, Guerlais S H. Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean) [J]. Marine & Petroleum Geology, 2009, 26(9): 1681-1691.
    [41]
    王家生, Suess E. 天然气水合物伴生的沉积物碳、氧稳定同位素示踪[J]. 科学通报, 2002, 47(15):1172-1176. [WANG Jiasheng, Suess E. Carbon and oxygen stable isotope tracing of sediments associated with gas hydrate [J]. Chinese Science Bulletin, 2002, 47(15): 1172-1176. doi: 10.3321/j.issn:0023-074X.2002.15.012
    [42]
    Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005
    [43]
    Luo M, Torres M E, Hong W L, et al. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin [J]. Earth and Planetary Science Letters, 2020, 541: 116288. doi: 10.1016/j.jpgl.2020.116288
    [44]
    Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediment [J]. Geochimica et Cosmochimica Acta, 2017, 207: 256-276. doi: 10.1016/j.gca.2017.03.019
    [45]
    Karaca D, Hensen C, Wallmann K. Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08S27.
    [46]
    Lein A Y, Pimenov N V, Savviechev A S, et al. Methane as a source of organic matter and carbon dioxide of carbonates at a cold seep in the Norway Sea [J]. Geochemistry International, 2000, 38(3): 232-245.
    [47]
    Niemann H, Linke P, Knittel K, et al. Methane-carbon flow into the benthic food web at cold seeps – A case study from the costa Rica Subduction zone [J]. PLoS One, 2013, 8(10): e74894. doi: 10.1371/journal.pone.0074894
    [48]
    Haese R R, Meile C, van Cappellen P, et al. Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 361-375. doi: 10.1016/S0012-821X(03)00226-7
    [49]
    Wang X C, Chen R F, Whelan J, et al. Contribution of "Old" carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico [J]. Geophysical Research Letters, 2001, 28(17): 3313-3316. doi: 10.1029/2001GL013430
    [50]
    Pohlman J W, Bauer J E, Waite W F, et al. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans [J]. Nature Geoscience, 2011, 4(1): 37-41. doi: 10.1038/ngeo1016
    [51]
    Hung C W, Huang K H, Shih Y Y, et al. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea [J]. Scientific Reports, 2016, 6: 29597. doi: 10.1038/srep29597
    [52]
    Stadnitskaia A, Muyzer G, Abbas B, et al. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea [J]. Marine Geology, 2005, 217(1-2): 67-96. doi: 10.1016/j.margeo.2005.02.023
    [53]
    Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz [J]. Sedimentary Geology, 2012, 243-244: 155-168. doi: 10.1016/j.sedgeo.2011.10.013
    [54]
    Tamborrino L, Himmler T, Elvert M, et al. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea [J]. Marine and Petroleum Geology, 2019, 107: 20-31. doi: 10.1016/j.marpetgeo.2019.05.003
    [55]
    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008
    [56]
    Ruffine L, Germain Y, Polonia A, et al. Pore water geochemistry at two seismogenic areas in the Sea of Marmara [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7): 2038-2057. doi: 10.1002/2015GC005798
    [57]
    Mazumdar A, Peketi A, Joao H M, et al. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit [J]. Marine & Petroleum Geology, 2014, 49: 162-175.
    [58]
    Haese R R, Hensen C, de Lange G J. Pore water geochemistry of eastern Mediterranean mud volcanoes: Implications for fluid transport and fluid origin [J]. Marine Geology, 2006, 225(1-4): 191-208. doi: 10.1016/j.margeo.2005.09.001
    [59]
    Aloisi G, Drews M, Wallmann K, et al. Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles [J]. Earth & Planetary Science Letters, 2004, 225(3-4): 347-363.
    [60]
    焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7):668-681. [JIAO Nianzhi, LI Chao, WANG Xiaoxue. Response and feedback of marine carbon sink to climate change [J]. Advances in Earth Science, 2016, 31(7): 668-681. doi: 10.11867/j.issn.1001-8166.2016.07.0668.
    [61]
    Dimitrov L, Woodside J. Deep sea pockmark environments in the eastern Mediterranean [J]. Marine Geology, 2003, 195(1-4): 263-276. doi: 10.1016/S0025-3227(02)00692-8
    [62]
    Palomino D, López-González N, Vázquez J T, et al. Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cádiz continental slope (northeastern sector) [J]. Marine Geology, 2016, 378: 196-212. doi: 10.1016/j.margeo.2015.10.001
    [63]
    Chuang P C, Yang T F, Hong W L, et al. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation [J]. Geofluids, 2010, 10(4): 497-510. doi: 10.1111/j.1468-8123.2010.00313.x
    [64]
    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926
    [65]
    Werne J P, Haese R R, Zitter T, et al. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea [J]. Chemical Geology, 2004, 205(3-4): 367-390. doi: 10.1016/j.chemgeo.2003.12.031
    [66]
    Ritt, B., Pierre, C., Gauthier, O. et al Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan [J]. Marine Biology, 2011, 158: 1187-1210. doi: 10.1007/s00227-011-1679-6
    [67]
    Tanhua T, Bates N R, Körtzinger A. The marine carbon cycle and ocean carbon inventories [J]. International Geophysics, 2013, 103: 787-815. doi: 10.1016/B978-0-12-391851-2.00030-1
    [68]
    张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州: 浙江大学, 2018.

    ZHANG Han. A modeling study of interactive feedbacks between carbon dioxide, global warming, ocean acidification, and the ocean carbon cycle[D]. Hangzhou: Zhejiang University, 2018:19-50.
    [69]
    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment [J]. Energy & Fuels, 2005, 19(2): 459-470.
    [70]
    Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean [J]. Geophysical Research Letters, 2003, 30(2): 1037.
    [71]
    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
    [72]
    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth & Planetary Science Letters, 2006, 244(1-2): 1-15.
    [73]
    Zhang X R, Sun Z L, Fan D J, et al. Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea [J]. Continental Shelf Research, 2019, 174: 108-117. doi: 10.1016/j.csr.2018.12.014
    [74]
    Wallmann K, Aloisi G, Haeckel M, et al. Silicate weathering in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918. doi: 10.1016/j.gca.2008.03.026
  • Related Articles

    [1]CAI Song, PENG Guangrong, CHEN Zhaoming, JIANG Dapeng, LI Kecheng, WU Jianyao, ZHANG Chujing. Paleogene tectonic evolution of Kaiping Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 106-118. DOI: 10.16562/j.cnki.0256-1492.2022072702
    [2]GAO Yangdong, LIN Heming, WANG Xudong, LIU Pei, LI Zhensheng, ZHANG Qin, XIONG Wanlin. Source rock distribution pattern in an episodic rifting sag and later stage magmatiic reformation: A case from Panyu 4 sag, Zhu I Depression[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 151-160. DOI: 10.16562/j.cnki.0256-1492.2021012501
    [3]SHI Chuang, LONG Zulie, ZHU Junzhang, JIANG Zhenglong, HUANG Yuping. Element geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and their environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 79-86. DOI: 10.16562/j.cnki.0256-1492.2020042101
    [4]ZHANG Hao, LUAN Xiwu, RAN Weimin, WANG Kuo, WEI Xinyuan, SHI Yanfeng, Mohammad Saiful Islam, WANG Jia. Discussion on fault characteristics and genesis of Wenchang A Sag in the west of the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 96-106. DOI: 10.16562/j.cnki.0256-1492.2019050901
    [5]MA Benjun, QIN Zhiliang, WU Shiguo, MI Lijun, GAO Wei, WANG Lei. Types and genesis of the mixed deposits in the Pearl River Mouth Basin of South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 149-158. DOI: 10.16562/j.cnki.0256-1492.2018.06.015
    [6]LI Shanshan, PENG Song, DENG Yong, WEI Changfei, LI Hui, ZHAN Yeping. UPPER OLIGOCENE-EARLY LOWER MIOCENE SEDIMENTARY FACIES AND RESERVOIR DISTRIBUTION PATTERN IN WENCHANG H ZONE IN THE WESTERN PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 103-110. DOI: 10.16562/j.cnki.0256-1492.2015.05.012
    [7]WU Qilin, HUANG SiJing, DAN Zhiwei, XIAO Wei, ZENG Yi, ZHOU Xiaokang, HOU Zhiping. PREDICTION OF CARBONATE RESERVOIRS IN BLOCK A OF HUIZHOU AREA IN PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 149-155. DOI: 10.3724/SP.J.1140.2015.02149
    [8]GUO Qiaozhen, CHEN Feng, YANG Xianghua, SHU Yu, WU Jing. SHALLOW BRAIDED DELTAIC SYSTEM IN ENPING FORMATION OF HUIZHOU DEPRESSION,PEARL RIVER MOUTH[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 25-32. DOI: 10.3724/SP.J.1140.2013.01025
    [9]ZHANG Yang, YE Jiaren, WANG Zisong, TANG Xinyuan, KANG Jianyun. CHARACTERISTICS AND EVOLUTIONARY HISTORY OF OVERPRESSURE IN PANYU 4 SAG, PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 171-177. DOI: 10.3724/SP.J.1140.2010.04171
    [10]ZHU Yanhe, ZHU Weilin, XU Qiang, WANG Yingmin, LÜ Ming. SEDIMENTARY CHARACTERISTICS AND SEQUENCE FRAMEWORK OF THE ZHUHAI-ZHUJIANG FORMATION IN THE MIDDLE AREA OF PEARL RIVER MOUTH BASIN[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 77-83. DOI: 10.3724/SP.J.1140.2009.04077
  • Cited by

    Periodical cited type(8)

    1. 刘太勋,孙丰春,彭光荣,汪旭东,孙辉,解斌,苏兆佳. 珠江口盆地白云凹陷东部古近系文昌组沉积演化特征. 中国石油大学学报(自然科学版). 2024(01): 77-90 .
    2. 冯进,马永坤,贾培蒙,史玉玲,邱欣卫,牛胜利,梁浩然. 珠江口盆地西江凹陷XJ-A构造古近系储层特征及对油气成藏的影响. 成都理工大学学报(自然科学版). 2024(03): 392-402+417 .
    3. 邱浩,文敏,吴怡,幸雪松,马楠,李占东,郭天姿. 南海油田惠州潜山裂缝性凝析油气藏控水实验. 新疆石油地质. 2023(01): 84-92 .
    4. 黄鑫,陈维涛,王文勇,何叶. 珠江口盆地西江凹陷北部构造转换背景下文昌组层序地层与沉积充填特征. 海洋地质前沿. 2023(05): 43-54 .
    5. 张兰,何贤科,段冬平,常吟善,汪文基,刘英辉. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究. 海洋地质与第四纪地质. 2023(04): 140-149 . 本站查看
    6. 吴宇翔,柳保军,张春生,丁琳,谢世文,李小平,龙更生. 珠江口盆地白云凹陷古近纪挠曲缓坡带三角洲沉积过程响应水槽模拟. 石油实验地质. 2022(03): 476-486 .
    7. 何金海,彭光荣,吴静,李振升,蔡国富,汪晓萌,杜晓东,赵超,石创,朱定伟. 珠江口盆地边缘洼陷油气勘探潜力——以西江36洼为例. 海洋地质与第四纪地质. 2022(04): 146-158 . 本站查看
    8. 张卫卫,刘军,刘力辉,张晓钊,白海军,杨登锋. 珠江口盆地番禺4洼古近系文昌组岩性预测技术及应用. 岩性油气藏. 2022(06): 118-125 .

    Other cited types(4)

Catalog

    Article views (3962) PDF downloads (154) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return