SU Jing, ZHONG Guangfa. Sedimentary and petrophysical characteristics of various turbidites at IODP Sites U1499 and U1500 in the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 13-24. DOI: 10.16562/j.cnki.0256-1492.2020012101
Citation: SU Jing, ZHONG Guangfa. Sedimentary and petrophysical characteristics of various turbidites at IODP Sites U1499 and U1500 in the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 13-24. DOI: 10.16562/j.cnki.0256-1492.2020012101

Sedimentary and petrophysical characteristics of various turbidites at IODP Sites U1499 and U1500 in the northern South China Sea

More Information
  • Received Date: January 20, 2020
  • Revised Date: March 29, 2020
  • Available Online: May 28, 2020
  • The deep-sea turbidite is an important target for petroleum and gas hydrate exploration, and is of significance to paleoceanographic, paleoenvironmental, paleotectonic and paleoclimatic researches. Turbidites have been investigated mostly in a sedimentological and less in a petrophysical perspective. In this paper, cores and thin sections (and /or smear slides) are used to study the sedimentary characteristics and petrophysical responses of the turbidites at the IODP Sites of U1499 and U1500 in the northern part of the South China Sea (SCS). Three types of turbidites are identified, i.e. the calcareous, terrigenous, and terrigenous-calcareous mixed turbidites. The later two types dominate. Each type of turbidites has its own petrophysical characteristics. The calcareous turbidites are characterized by low magnetic susceptibility, high brightness in color reflectance spectrometry, variable density, and low natural gamma radiation; the terrigenous turbidites characterized by low magnetic susceptibility, low to medium brightness, medium to high density, and medium to low natural gamma radiation; and the mixed turbidites characterized by variable magnetic susceptibility, brightness and natural gamma radiation and medium to high density. The turbidites mainly occur in the late Miocene and the middle-late Pleistocene sequences, followed by the early Pleistocene, the Pliocene, and the early-middle Miocene. The euatatic lowstand periods in the late Miocene and middle-late Pleistocene could be favorable for the deposition of the turbidites in the SCS. The gradual decrease in the abundance of calcarous turbidites since late Miocene could be associated with the gradual deepening of the oceanic basin and the shrinking of carbonate depositional area in the SCS.
  • [1]
    陈峰, 蔡锋, 杨宝华, 等. 南海深海盆地沉积柱样中的浊流沉积[J]. 台湾海峡, 1992(4):339-344. [CHEN Feng, CAI Feng, YANG Baohua, et al. Fine-grained turbidite deposits from deep-sea basin in South China Sea [J]. Journal of Oceangraphy in Taiwan Strait, 1992(4): 339-344.
    [2]
    李粹中. 南海海盆北部平原受台湾西南陆坡浊流影响的证据[J]. 海洋通报, 1993, 12(1):103-105. [LI Cuizhong. Evidence of the northern plain of the South China Sea basin affected by the turbulence of the southwestern Taiwan slope [J]. Marine Science Bulletin, 1993, 12(1): 103-105.
    [3]
    章伟艳, 张富元, 张霄宇. 南海东部海域柱样沉积物浊流沉积探讨[J]. 热带海洋学报, 2003, 22(3):36-43. [ZHANG Weiyan, ZHANG Fuyuan, ZHANG Xiaoyu. Characteristics of turbidity deposits from sediment cores in eastern South China Sea [J]. Journal of Tropical Oceanography, 2003, 22(3): 36-43. doi: 10.3969/j.issn.1009-5470.2003.03.006
    [4]
    张富元, 张霄宇, 杨群慧, 等. 南海东部海域的沉积作用和物质来源研究[J]. 海洋学报, 2005, 27(2):79-90. [ZHANG Fuyuan, ZHANG Xiaoyu, YANG Qunhui, et al. Research on sedimentations and material sources in the eastern South China Sea [J]. Acta Oceanologica Sinica, 2005, 27(2): 79-90.
    [5]
    Wetzel A, Unverricht D. A muddy megaturbidite in the deep central South China Sea deposited ~350 yrs BP [J]. Marine Geology, 2013, 346: 91-100. doi: 10.1016/j.margeo.2013.08.010
    [6]
    Li C, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.
    [7]
    Sun Z, Jian Z, Stock J M, et al. Proceedings of the International Ocean Discovery Program, 367, South China Sea Rifted Margin[R]. IODP College Station, Texas, 2018.
    [8]
    杨胜雄, 邱燕, 朱本铎. 南海地质地球物理图系(1:200万)[M]. 天津: 中国航海图书出版社, 2015.

    YANG Shengxiong, QIU Yan, ZHU Benduo. The atlas of geology and geophysics of the South China Sea (1:2000000)[M]. Tianjin: China Navigation Publications Press, 2015.
    [9]
    Stoner J S, Channell J E T, Hillaire-Marcel C. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: Relationship to North Atlantic Heinrich layers [J]. Paleoceanography, 1996, 11(3): 309-325.
    [10]
    Balsam W L, Deaton B C, Damuth J E. Evaluating optical lightness as a proxy for carbonate content in marine sediment cores [J]. Marine Geology, 1999, 161: 141-153.
    [11]
    St-Onge G, Mulder T, Francus P, et al. Continuous physical properties of cored marine sediments [J]. Developments in Marine Geology, 2007, 1: 63-98. doi: 10.1016/S1572-5480(07)01007-X
    [12]
    Rider M H. The geological interpretation of well logs: Caithness (2nd edition)[M]. Whittles Publishing, 1996.
    [13]
    Haq B U, Hardenbol J, Vail P R. Chronology of Fluctuating Sea Levels Since the Triassic [J]. Science, 1987, 235(4793): 1156-1167.
    [14]
    Mix A C, Tiedemann R, Blum P, et al. Proceedings of the ODP, Initial Reports, 202[R]. Ocean Drilling Program, 2003.
    [15]
    Goldfinger C, Morey A E, Nelson C H, et al. Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy [J]. Earth and Planetary Science Letters, 2007, 254: 9-27.
    [16]
    Weber M E, Reilly B T. Hemipelagic and turbiditic deposits constrain lower Bengal Fan depositional history through Pleistocene climate, monsoon, and sea level transitions [J]. Quaternary Science Reviews, 2018, 199: 159-173. doi: 10.1016/j.quascirev.2018.09.027
    [17]
    Prins M A, Postma G. Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea [J]. Geology, 2000, 28: 375-378.
    [18]
    Posamentier H W, Kolla V, 刘化清. 深水浊流沉积综述[J]. 沉积学报, 2019, 37(5):879-903. [Posamentier H W, Kolla V, Liu H. An overview of deep-water turbidite deposition [J]. Acta Sedimentologica Sinica, 2019, 37(5): 879-903.
    [19]
    Weaver P, Kuijpers A. Climatic control of turbidite deposition on the Madeira Abyssal Plain [J]. Nature, 1983, 306: 360-363. doi: 10.1038/306360a0
    [20]
    Wu S, Yang Z, Wang D, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 50: 71-83.
    [21]
    Wu S, Zhang X, Yang Z, et al. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: Response to opening of the ocean basin [J]. Interpretation, 2016, 4: SP1-SP19.
    [22]
    吴时国, 朱伟林, 马永生. 南海半封闭边缘海碳酸盐台地兴衰史[J]. 海洋地质与第四纪地质, 2018, 38(6):1-17. [WU Shiguo, ZHU Weilin, MA Yongsheng. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas [J]. Marine Geology & Quaternary Geology, 2018, 38(6): 1-17.
    [23]
    Shanmugam G, Moiola R J. Eustatic control of turbidites and winnowed turbidites [J]. Geology, 1982, 10: 231-235. doi: 10.1130/0091-7613(1982)10<231:ECOTAW>2.0.CO;2
  • Related Articles

    [1]ZHENG Chang, JIN Xiaobo, LIU Chuanlian. Origin and content of alkenone of the Early Miocene marine sediments from IODP U1501 in the South China Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 128-135. DOI: 10.16562/j.cnki.0256-1492.2022110102
    [2]GAO Hongfang, NIE Xin, LUO Weidong. “Source to sink” analysis of a sea basin: The Quaternary deepwater turbidite fan system in Pearl River Valley-Northwest subbasin, Northern South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 1-12. DOI: 10.16562/j.cnki.0256-1492.2020070202
    [3]ZHU Rongwei, LIU hailing, YAO Yongjian, NIE Xin, XU Ziying. Cenozoic tectonic subsidence of the continental margins of southwest sub-basin, South China Sea and its evolution[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 82-92. DOI: 10.16562/j.cnki.0256-1492.2020052002
    [4]QIU Yan, DU Wenbo, HUANG Wenkai, WANG Yingmin, NIE Xin. Stratigraphic features and controlling factors in the eastern Sub-basin of the Central Basin, South China Sea during the post-spreading period[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 1-14. DOI: 10.16562/j.cnki.0256-1492.2020053001
    [5]ZHANG Huodai, ZHU Benduo, GUAN Yongxian, YANG Shengxiong. TOPOGRAPHIC FEATURES OF THE SEAMOUNTS IN THECENTRAL BASIN OF THE SOUTH CHINA SEA:BASED ON MULTI-BEAM BATHYMETRIC DATA[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 149-157. DOI: 10.16562/j.cnki.0256-1492.2017.06.016
    [6]YANG Peng, XIA Bin, CAI Zhourong, WAN Zhifeng, HUANG Qiangtai, ZHANG Yong. GENETIC MECHANISM OF THE YINGGEHAI BASIN, NORTHERN SOUTH CHINA SEA: A COMPARATIVE STUDY TO THE WEIHE BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 65-75. DOI: 10.16562/j.cnki.0256-1492.2017.06.007
    [7]LI Xibing, WU Zhenli, LI Jiabiao. THE PRELIMINARY STUDY OF SEGMENTATION OF THE MID-OCEAN RIDGE IN SOUTHWEST SUB-BASIN OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 101-107. DOI: 10.3724/SP.J.1140.2013.03101
    [8]LI Sanzhong, SUO Yanhui, LIU Xin, DAI Liming, YU Shan, ZHAO Shujuan, MA Yun, WANG Xiaofei, CHENG Shixiu, AN Huiting, XUE Youchen, XIONG Lijuan, CAO Xianzhi, XU Liqing. BASIN DYNAMICS AND BASIN GROUPS OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 55-78. DOI: 10.3724/SP.J.1140.2012.06055
    [9]LIU Baoming, LIU Hailing. THE MESOZOIC IN THE SOUTH CHINA SEA AND ADJACENT AREAS: NEW TARGETS FOR HYDROCARBON EXPLORATION[J]. Marine Geology & Quaternary Geology, 2011, 31(2): 105-109. DOI: 10.3724/SP.J.1140.2011.02105
    [10]ZHANG Chong, WU Shi-min, QIU Xue-lin. FORMATION OF FORELAND BASINS IN THE SOUTH OF THE SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 61-70.
  • Cited by

    Periodical cited type(2)

    1. Jingjing Gao,Jihua Liu,Hui Zhang,Shijuan Yan,Xiangwen Ren,Quanshu Yan. The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts. Acta Oceanologica Sinica. 2024(08): 58-68 .
    2. 丁雪,刘佳,杨慧良,赵京涛,黄威,李攀峰,宋维宇,郭建卫,虞义勇,崔汝勇,胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制. 海洋地质与第四纪地质. 2023(04): 105-115 . 本站查看

    Other cited types(1)

Catalog

    Article views (2883) PDF downloads (76) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return