WANG Yang, FANG Nianqiao. Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 162-174. DOI: 10.16562/j.cnki.0256-1492.2019110701
Citation: WANG Yang, FANG Nianqiao. Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 162-174. DOI: 10.16562/j.cnki.0256-1492.2019110701

Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors

More Information
  • Received Date: November 06, 2019
  • Revised Date: February 27, 2020
  • Available Online: August 20, 2020
  • The growth rate of polymetallic crust varies in different growing areas and layers, constrained by some marine factors. In this paper, the polymetallic crust growth rate and its variation with growth region, age and structures are studied, in addition to the relationship between growth discontinuity and growth rate change. It is found that from east to west of the study area, i.e. from the Line Seamounts to Magellan Seamounts, the growth rate of polymetallic crusts decreases as the crusts change from dense to loose to sub-dense in layers, from old to young in ages and from high to low in topography. The areas below OMZ, where it is strong in oxidability, abundant in terrigenous materials supply and high in dissolution rate of calcium carbonate, are the areas favorable to the growth of crusts. Hiatus of crusts corresponding to three types of growth rate changes are observed in the study area: a) before the growth rate turned from low to high, which mainly corresponds to the hiatus of 65~60 Ma, the hydrodynamic condition of the environment is not good enough to crust growth, so the crust stopped growing and the crust could only resume growing when conditions were improved. b) when the climate warmed up and the supply of continental-derived wind dust remain low, the growth rate of crust would drop from high, which mainly corresponds to the two hiatuses during 51~42 Ma and 40~35 Ma. The crusts stopped growing when the environment became severe, and could only resume growing when it was slightly getting better. c) the growth rate remained low, which corresponded to the hiatus of 28-18 Ma, while the dissolution rate of CaCO3 in the ocean was low. The crusts grew intermittently if the growth environment remained poor.
  • [1]
    Cowen J P, De Carlo E H, McGee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount [J]. Marine Geology, 1993, 115(3-4): 289-306. doi: 10.1016/0025-3227(93)90057-3
    [2]
    Chabaux F, Unions R K, Cohen A S, et al. 238U-234U-230Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration? [J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3619-3632. doi: 10.1016/S0016-7037(97)00187-7
    [3]
    Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016
    [4]
    李江山, 方念乔, 屈文俊, 等. 中太平洋富钴结壳的Os同位素定年与结壳生长间断[J]. 中国科学D辑: 地球科学, 2008, 51(10):1452-1459. [LI Jiangshan, FANG Nianqiao, QU Wenjun, et al. Os Isotope dating and growth hiatuses of Co-rich crust from central Pacific [J]. Science in China Series D: Earth Sciences, 2008, 51(10): 1452-1459. doi: 10.1007/s11430-008-0100-x
    [5]
    Hein J R, Bohrson W A, Schulz M S, et al. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications [J]. Paleoceanography, 1992, 7(1): 63-77. doi: 10.1029/91PA02936
    [6]
    Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from Central Pacific Seamount areas [J]. Nature, 1983, 304(5928): 716-719. doi: 10.1038/304716a0
    [7]
    栾锡武. 大洋富钴结壳成因机制的探讨——水成因证据[J]. 海洋学研究, 2006, 24(2):8-19. [LUAN Xiwu. Cobalt-rich ferromanganese crusts formation—Evidences of hydrogenous origin [J]. Journal of Marine Sciences, 2006, 24(2): 8-19. doi: 10.3969/j.issn.1001-909X.2006.02.002
    [8]
    朱克超, 赵祖斌, 李扬. 麦哲伦海山区MD、ME、MF海山富钴结壳特征[J]. 海洋地质与第四纪地质, 2001, 21(1):33-38. [ZHU Kechao, ZHAO Zubin, LI Yang. Cobalt-rich ferromanganese crusts from the MA, ME, and MF seamounts of the Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2001, 21(1): 33-38.
    [9]
    Segl M, Mangini A, Banani G, et al. 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation [J]. Nature, 1984, 309(5968): 540-543. doi: 10.1038/309540a0
    [10]
    Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific Seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5
    [11]
    潘家华, DeCarlo E, 刘淑琴, 等. 西太平洋富钴结壳生长与富集特征[J]. 地质学报, 2005, 79(1):124-132. [PAN Jiahua, DeCarlo E, LIU Shuqin, et al. Growth and enrichment characteristics of Co-rich crusts in the Western Pacific [J]. Acta Geologica Sinica, 2005, 79(1): 124-132. doi: 10.3321/j.issn:0001-5717.2005.01.014
    [12]
    Eisenhauer A, Gögen K, Pernicka E, et al. Climatic influences on the growth rates of Mn crusts during the Late Quaternary [J]. Earth and Planetary Science Letters, 1992, 109(1-2): 25-36. doi: 10.1016/0012-821X(92)90071-3
    [13]
    Mangini A, Segl M, Glasby G P, et al. Element accumulation rates in and growth histories of manganese nodules from the southwestern Pacific basin [J]. Marine Geology, 1990, 94(1-2): 97-107. doi: 10.1016/0025-3227(90)90105-S
    [14]
    Von Blanckenburg F, O’Nions R K, Hein J R. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe–Mn crusts [J]. Geochimica et Cosmochimica Acta, 1996, 60(24): 4957-4963. doi: 10.1016/S0016-7037(96)00310-9
    [15]
    Banakar V K, Pattan J N, Mudholkar A V. Palaeoceanographic conditions during the formation of a ferromanganese crust from the Afanasiy-Nikitin seamount, North Central Indian Ocean: geochemical evidence [J]. Marine Geology, 1997, 136(3-4): 299-315. doi: 10.1016/S0025-3227(96)00065-5
    [16]
    Banakar V K, Hein J R. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean [J]. Marine Geology, 2000, 162(2-4): 529-540. doi: 10.1016/S0025-3227(99)00077-8
    [17]
    Frank M, O’Nions R K. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion? [J]. Earth and Planetary Science Letters, 1998, 158(3-4): 121-130. doi: 10.1016/S0012-821X(98)00055-7
    [18]
    潘家华, 张静, 刘淑琴, 等. 西北太平洋富钴结壳的钙质超微化石地层学研究及意义[J]. 地球学报, 2007, 28(5):411-417. [PAN Jiahua, ZHANG Jing, LIU Shuqin, et al. Calcareous nannofossil biostratigraphy of Co-rich crusts from Northwestern Pacific and its significance [J]. Acta Geoscientica Sinica, 2007, 28(5): 411-417. doi: 10.3321/j.issn:1006-3021.2007.05.001
    [19]
    Noguchi A, Yamamoto Y, Nishi K, et al. Paleomagnetic study of ferromanganese crusts recovered from the northwest Pacific- testing the applicability of the magnetostratigraphic method to estimate growth rate [J]. Ore Geology Reviews, 2017, 87: 16-24. doi: 10.1016/j.oregeorev.2016.07.018
    [20]
    Puteanus D, Halbach P. Correlation of Co concentration and growth rate-A method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3
    [21]
    初凤友, 胡大千, 姚杰. 中太平洋YJC海山富钴结壳矿物组成与元素地球化学[J]. 世界地质, 2006, 25(3):245-253. [CHU Fengyou, HU Daqian, YAO Jie. Mineral composition and element geochemistry of Co-rich crust from the YJC sea mount in the Central Pacific Ocean [J]. Global Geology, 2006, 25(3): 245-253. doi: 10.3969/j.issn.1004-5589.2006.03.005
    [22]
    李江山, 方念乔, 丁旋, 等. 富钴结壳显微构造与元素含量: 基于中太平洋MHD79样品的研究[J]. 现代地质, 2007, 21(3):518-523. [LI Jiangshan, FANG Nianqiao, DING Xuan, et al. Microstructure and element abundance of Co-rich crust: Evidences from the layered sample MHD79 collected from the Central Pacific [J]. Geoscience, 2007, 21(3): 518-523. doi: 10.3969/j.issn.1000-8527.2007.03.013
    [23]
    Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0
    [24]
    McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7
    [25]
    Frank M, O’Nions R K, Hein J R, et al. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1689-1708. doi: 10.1016/S0016-7037(99)00079-4
    [26]
    Du A D, Wu S Q, Sun D Z, et al. Preparation and certification of Re-Os dating reference materials: Molybdenites HLP and JDC [J]. Geostandards and Geoanalytical Research, 2004, 28(1): 41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x
    [27]
    符亚洲. 中太平洋莱恩海山富钴结壳的地球化学及Os同位素地层年代学研究[D]. 中国科学院地球化学研究所博士学位论文, 2006: 89-92.

    FU Yazhou. Geochemistry and Os isotopic geochronology of cobalt rich crusts in the Line seamount, Central Pacific Ocean[D]. Doctor Dissertation of Institute of geochemistry, Chinese Academy of Sciences, 2006: 89-92.
    [28]
    Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2
    [29]
    Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9
    [30]
    李江山. 中、西太平洋富钴结壳地球化学及古海洋环境[D]. 中国地质大学, 2007: 20-28.

    LI Jiangshan. Geochemistry and paleoceanic environment of cobalt rich crusts in the central and western Pacific[D]. China University of Geosciences, 2007: 20-28.
    [31]
    张志超. 中西太平洋富钴结壳Os同位素年代学研究及古海洋学意义[D]. 中国地质大学硕士学位论文, 2014: 11-13.

    ZHANG Zhichao. Geochronology of cobalt rich crusts in the central and western Pacific and its paleoceanographic significance[D]. Master Dissertation of China University of Geosciences, 2014: 11-13.
    [32]
    Halbach P, Giovanoli R, von Borstel D. Geochemical processes controlling the relationship between Co, Mn, and Fe in early diagenetic deep-sea nodules [J]. Earth and Planetary Science Letters, 1982, 60(2): 226-236. doi: 10.1016/0012-821X(82)90005-X
    [33]
    Boyd P W, Ellwood M J. The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience, 2010, 3(10): 675-682. doi: 10.1038/ngeo964
    [34]
    Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean [J]. Nature, 2015, 523(7559): 200-203. doi: 10.1038/nature14577
    [35]
    Bressac M, Guieu C, Ellwood M J, et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition [J]. Nature Geoscience, 2019, 12(12): 995-1000. doi: 10.1038/s41561-019-0476-6
    [36]
    Ostrander C M, Nielsen S G, Owens J D, et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event [J]. Nature Geoscience, 2019, 12(3): 186-191. doi: 10.1038/s41561-019-0309-7
    [37]
    Aplin A C, Cronan D S. Ferromanganese oxide deposits from the central Pacific Ocean. I. Encrustations from the Line Islands Archipelago [J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 427-436. doi: 10.1016/0016-7037(85)90034-1
    [38]
    Robbins L J, Funk S P, Flynn S L, et al. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations [J]. Nature Geoscience, 2019, 12(7): 558-563. doi: 10.1038/s41561-019-0372-0
    [39]
    De Carlo E H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean [J]. Marine Geology, 1991, 98(2-4): 449-467. doi: 10.1016/0025-3227(91)90116-L
    [40]
    许东禹. 太平洋古海洋事件和成矿作用[C]//第30届国际地质大会论文集, 第13卷, 海洋地质学, 古海洋学. 北京: 地质出版社, 1999: 101-113.

    XU Dongyu. Paleooceanic events and mineralization in the Pacific Ocean[C]//Proceedings of the 30th International Geological Congress, Volume 13, Marine Geology and Paleoceanography. Beijing: Geological Publishing House, 1999: 101-113.
    [41]
    Siesser W G. Paleoproductivity of the Indian Ocean during the Tertiary period [J]. Global and Planetary Change, 1995, 11(1-2): 71-88. doi: 10.1016/0921-8181(95)00003-A
    [42]
    Roden G I. Effects of the Fieberling seamount group upon flow and thermohaline structure in the spring of 1991 [J]. Journal of Geophysical Research, 1994, 99(C5): 9941-9961. doi: 10.1029/94JC00057
    [43]
    Pautot G, Melguen M. Deep bottom currents, sedimentary hiatuses and polymetallic nodules [J]. Technical Bulletin, 1976, 2: 54-61.
    [44]
    张振国. 南海北部陆缘多金属结核地球化学特征及成矿意义[D]. 中国地质大学博士学位论文, 2007: 98-102.

    ZHANG Zhenguo. Approach to geochemical characteristics and minerogenetic environment of polymetallic nodules from the northern continental margin of the South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2007: 98-102.
    [45]
    吴长航. 南海北部陆缘大型多金属结核的生长及元素地球化学特征研究[D]. 中国地质大学博士学位论文, 2009: 63-117.

    WU Changhang. Research on the growth and elemental geochemical characteristics of large-scale polymetallic nodules from the Northern continental margin of the South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2009: 63-117.
    [46]
    佟景贵. 太平洋富钴结壳矿物地球化学及古海洋与古环境重建[D]. 中国地质大学博士学位论文, 2007: 6-13.

    TONG Jingguo. Geochemical and mineralogical study on the Co-rich ferromanganese crust from the Pacific ocean and the palaeoocean and palaeoenvironment reconstruction[D]. Doctor Dissertation of China University of Geosciences, 2007: 6-13.
    [47]
    Leinen M, Heath G R. Sedimentary indicators of atmospheric activity in the northern hemisphere during the Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 36(1-2): 1-21. doi: 10.1016/0031-0182(81)90046-8
    [48]
    丁旋, 高莲凤, 方念乔, 等. 太平洋海山富钴结壳生长过程与新生代海洋演化关系[J]. 中国科学D辑: 地球科学, 2009, 52(8):1091-1103. [DING Xuan, GAO Lianfeng, FANG Nianqiao, et al. The relationship between the growth process of the ferromanganese crusts in the Pacific seamount and Cenozoic ocean evolvement [J]. Science in China Series D: Earth Sciences, 2009, 52(8): 1091-1103. doi: 10.1007/s11430-009-0106-z
    [49]
    Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events [J]. Paleoceanography, 1989, 4(5): 511-530. doi: 10.1029/PA004i005p00511
  • Related Articles

    [1]CHEN Shanshan, WANG Zhongbo, LU Kai, QI Jianghao, ZHAO Zhao, ZHANG Zhixun. Sedimentary stratigraphic framework and palaeoenvironmental evolution of the northern outer shelf of East China Sea since MIS 6[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 124-137. DOI: 10.16562/j.cnki.0256-1492.2019052901
    [3]LI Yanlong, CHEN Qiang, HU Gaowei, MA Tinglei, WU Nengyou, LIU Changling. Distribution of horizontal permeability coefficient of the cover layer of HBS at Site W18/19 of Shenhu area[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 157-163. DOI: 10.16562/j.cnki.0256-1492.2017080103
    [4]HU Gaowei, LI Yanlong, WU Nengyou, Chen Qiang, LIU Changling, LIU Zhenwen. UNDRAINED SHEAR STRENGTH ESTIMATION OF THE COVER LAYER OF HYDRATE AT SITE W18/19 OF SHENHU AREA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 151-158. DOI: 10.16562/j.cnki.0256-1492.2017.05.015
    [5]WU Cong, CHEN Chixin, CHEN Fang, ZHOU Yang. PALEOPRODUCTIVITY AND PALEOENVIRONMENTAL CHANGES OF THE NORTHERN SLOPE OF SOUTH CHINA SEA SINCE MIS 6: EVIDENCE FROM DIATOM OF CORE SH1B[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 95-102. DOI: 10.16562/j.cnki.0256-1492.2015.05.011
    [6]NIE Senyan, XIAO Wenshen, WANG Rujian. PALAEOCLIMATIC CHANGES OF THE BRANSFIELD STRAIT, ANTARCTIC PENINSULA SINCE 6 kaBP, AND THE TELE-CONNECTION WITH ENSO[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 157-166. DOI: 10.3724/SP.J.1140.2015.03157
    [7]ZHANG Junqiang, LIU Jian, KONG Xianghuai, XU Gang, QIU jiandong, YUE Baojing, WANG Feifei. STRATIGRAPHIC SEQUENCE AND DEPOSITIONAL ENVIRONMENT SINCE MARINE ISOTOPE STAGE 6 IN THE CONTINENTAL SHELF OF THE WESTERN SOUTH YELLOW SEA: A CASE OF SYS-0804 CORE[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 1-12. DOI: 10.3724/SP.J.1140.2015.01001
    [8]WU Yonghua, JIAN Zhimin, SHI Xuefa, CHENG Zhenbo, LI Xiaoyan, SHI Fengdeng. SEA SURFACE TEMPERATURE VARIATIONS IN THE NORTHERN PHILIPPINE SEA SINCE 19 CAL KABP[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 123-129. DOI: 10.3724/SP.J.1140.2012.04123
    [9]ZHAO Jingtao, LI Jun, CHANG Fengming, LI Tiegang. OXYGEN ISOTOPE RECORDS OF CALCAREOUS NANNOFOSSILS SINCE MIS 6 FROM THE MARGINAL AREA OF WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 75-82. DOI: 10.3724/SP.J.1140.2010.05075
    [10]ZHAO Jingtao, ZHOU Liancheng, LI Jun, CAO Qiyuan, LI Tiegang. VARIATIONS AND CONTROL FACTORS OF PERCENT CONTENT OF LOWER-PHOTIC CALCAREOUS NANNOFOSSIL SPECIES-FLORISPHAERA PROFUNDA IN THE MIDDLE OF OKINAWA TROUGH SINCE MIS 6[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 67-71. DOI: 10.3724/SP.J.1140.2009.01067
  • Cited by

    Periodical cited type(4)

    1. 赵鹏飞,刘朋,明君,崔云江,张婕茹,来又春. 渤中A凝析气田潜山储层特征及其地球物理判识方法. 地球科学. 2025(02): 504-520 .
    2. 杜昕,范廷恩,马淑芳,樊鹏军,张显文. 基于主控因素的潜山裂缝储层多尺度地震预测. 石油地球物理勘探. 2024(03): 598-607 .
    3. 施宁,刘敬寿,张冠杰,程奇,张雷,刘文超. 基底变质岩深部潜山储层构造裂缝发育特征及主控因素——以渤海湾盆地渤中B区块为例. 石油实验地质. 2024(04): 799-811 .
    4. 廖新武,谢润成,周文,汪跃,刘文超,刘卫林,程奇,熊晓军,罗紫薇. 古地貌对渤海湾盆地B区块太古宇暴露型潜山变质岩风化带储层裂缝发育的影响. 石油与天然气地质. 2023(02): 406-417 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return