CAI Yiyang, HAN Xiqiu, QIU Zhongyan, WANG Yejian, LI Mou, Samuel Olatunde Popoola. Characteristics, distribution and implication of hydrothermal minerals in Tianxiu Hydrothermal Field, Carlsberg Ridge, northwest Indian Ocean[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 36-45. DOI: 10.16562/j.cnki.0256-1492.2019101201
Citation: CAI Yiyang, HAN Xiqiu, QIU Zhongyan, WANG Yejian, LI Mou, Samuel Olatunde Popoola. Characteristics, distribution and implication of hydrothermal minerals in Tianxiu Hydrothermal Field, Carlsberg Ridge, northwest Indian Ocean[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 36-45. DOI: 10.16562/j.cnki.0256-1492.2019101201

Characteristics, distribution and implication of hydrothermal minerals in Tianxiu Hydrothermal Field, Carlsberg Ridge, northwest Indian Ocean

More Information
  • Received Date: October 11, 2019
  • Revised Date: November 26, 2019
  • Available Online: August 10, 2020
  • Hydrothermal minerals could originate from mass wasting of hydrothermal deposits or from the hydrothermal plume falling-out. The types and their spatial distribution of hydrothermal minerals are important indicators for constraining the location of hydrothermal field. The Tianxiu Hydrothermal Field (3°41′N,63°50′E) is an ultramafic-hosted field located on the Carlsberg Ridge, northwest Indian Ocean. In this paper, surface sediments collected from 4 stations near the active venting site of Tianxiu Hydrothermal Field and its surrounding regions were studied on hydrothermal minerals to understand their spatial variations on morphology, composition, abundance and particle size. Near the venting site (0 ~ 0.22 km) the hydrothermal minerals are dominated by Cu-Zn-Fe containing sulfide aggregates, in the size from gravel to sand, originated from the mass wasting of the sulfide deposits and precipitation from the hydrothermal fluid. For samples collected outside of the hydrothermal field (1.84 ~ 6.05 km away), the hydrothermal minerals are dominated by fine grain hydrothermal oxides and hydroxides derived from plume fallout. Our results suggest that the types and grain size of hydrothermal minerals and their spatial distribution can be served as a good indicator for tracking unknown active and inactive hydrothermal field and prospecting of the associated hydrothermal sulfide resources.
  • [1]
    Pirajno F. Hydrothermal Processes and Mineral Systems[M]. Netherlands: Springer, 2009.
    [2]
    Fouquet Y, Cambon P, Etoubleau J, et al. Geodiversity of hydrothermal processes along the mid-atlantic ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D.C.: AGU, 2010: 321-367.
    [3]
    Wang Y J, Han X Q, Petersen S, et al. Mineralogy and geochemistry of hydrothermal precipitates from kairei hydrothermal field, Central Indian Ridge [J]. Marine Geology, 2014, 354: 69-80. doi: 10.1016/j.margeo.2014.05.003
    [4]
    Firstova A, Stepanova T, Cherkashov G, et al. Composition and formation of gabbro-peridotite hosted seafloor massive sulfide deposits from the ashadze-1 hydrothermal field, Mid-Atlantic Ridge [J]. Minerals, 2016, 6(1): 19. doi: 10.3390/min6010019
    [5]
    Mills R, Elderfield H, Thomson J. A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid-Atlantic Ridge [J]. Journal of Geophysical Research, 1993, 98(B6): 9671-9681. doi: 10.1029/92JB01414
    [6]
    Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the Active TAG Mound, 26°N Mid-Atlantic Ridge [J]. Geochimica Et Cosmochimica Acta, 1995, 59(17): 3511-3524. doi: 10.1016/0016-7037(95)00224-N
    [7]
    German C R, Barreiro B A, Higgs N C, et al. Seawater-metasomatism in hydrothermal sediments (Escanaba Trough, Northeast Pacific) [J]. Chemical Geology, 1995, 119(1-4): 175-190. doi: 10.1016/0009-2541(94)00052-A
    [8]
    German C R, Seyfried W E Jr. Hydrothermal processes[M]//Treatise on Geochemistry. 2nd ed. New York: Elsevier, 2014, 8: 191-233.
    [9]
    Gurvich E G. Metalliferous Sediments of the World Ocean[M]. Berlin: Springer, 2006.
    [10]
    Andreani M, Escartin J, Delacour A, et al. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14′N) [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(9): 3543-3571. doi: 10.1002/2014GC005269
    [11]
    Dias Á S, Barriga F J A S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted saldanha hydrothermal field (36°34′N; 33°26′W) at MAR [J]. Marine Geology, 2006, 225(1-4): 157-175. doi: 10.1016/j.margeo.2005.07.013
    [12]
    Gràcia E, Charlou J L, Radford-Knoery J, et al. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°N-34°N): Ultramafic exposures and hosting of hydrothermal vents [J]. Earth & Planetary Science Letters, 2000, 177(1-2): 89-103.
    [13]
    李家彪. 现代海底热液硫化物成矿地质学[M]. 北京: 科学出版社, 2017.

    LI Jiabiao. Modern Seafloor Hydrothermal Mineralization[M]. Beijing: Science Press, 2017.
    [14]
    Barrett T J, Taylor P N, Lugoqski J. Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2241-2253. doi: 10.1016/0016-7037(87)90278-X
    [15]
    Hepburn L E. Hydrothermal sediment geochemistry south of the Antarctic Polar Front[D]. Doctor Dissertation of University of Southampton, 2015.
    [16]
    Mills R A, Elderfield H. Hydrothermal activity and the geochemistry of metalliferous sediment[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington, D.C., USA: American Geophysical Union, 1995.
    [17]
    Han X, Wang Y, Li X. First ultramafic-hosted hydrothermal sulfide deposit discovered on the Carlsberg Ridge, Northwest Indian Ocean[C]//Proceedings of the the Third InterRidge Theoretical Insitute. Hangzhou, 2015.
    [18]
    邱中炎, 韩喜球, 王叶剑, 等. 西北印度洋卡尔斯伯格脊沉积物特征及其找矿启示[J]. 矿物学报, 2015, 35(S1):776. [QIU Zhongyan, HAN Xiqiu, WANG Yejian, et al. The characteristics of sediments in Carlsberg Ridge, Northwest Indian Ocean and the implications for prospection [J]. Acta Mineralogica Sinica, 2015, 35(S1): 776.
    [19]
    Kamesh Raju K A, Chaubey A K, Amarnath D, et al. Morphotectonics of the Carlsberg Ridge between 62°20′ and 66°20′E, Northwest Indian Ocean [J]. Marine Geology, 2008, 252(3-4): 120-8. doi: 10.1016/j.margeo.2008.03.016
    [20]
    韩喜球, 吴招才, 裘碧波. 西北印度洋Carlsberg脊的分段性及其构造地貌特征——中国大洋24航次调查成果介绍[C]//第二届深海研究与地球系统科学学术研讨会论文集. 上海: 同济大学, 2012: 259-259.

    HAN Xiqiu, WU Zhaocai, QIU Bibo. Segmentation of the Carlsberg Ridge in the Northwest Indian Ocean — Report for Chinese DY24th Cruise[C]. 2012.
    [21]
    Ray D, Misra S, Banerjee R. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean [J]. Journal of Asian Earth Sciences, 2013, 70.
    [22]
    余星, 韩喜球, 邱中炎, 等. 西北印度洋脊的厘定及其地质构造特征[J]. 地球科学, 2019, 44(2):626-639. [YU Xing, HAN Xiqiu, QIU Zhongyan, et al. Definition of Northwest Indian Ridge and its geologic and tectonic signatures [J]. Earth Science, 2019, 44(2): 626-639.
    [23]
    韩喜球, 王叶剑, 李洪林, 等. 国际海底区域资源研究开发“十二五”课题课题研究报告[R].中国大洋协会办公室, 2015.

    HAN Xiqiu, WANG Yejian, LI Honglin, et al. Report of the 12th five-year plan on the research and development of resources in the international seafloor[R]. 2015.
    [24]
    Folk R L. Petrology of Sedimentary Rocks[M]. Austin, Texas: Hemphill Publishing Company, 1980.
    [25]
    Tucker M E. Sedimentary Rocks in the Field[M]. 3rd ed. West Sussex, UK: John Wiley & Sons Ltd., 2003.
    [26]
    Popoola S O, Han X Q, Wang Y J, et al. Geochemical investigations of Fe-Si-Mn oxyhydroxides deposits in wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean: Constraints on their types and origin [J]. Minerals, 2019, 9(1): 19.
    [27]
    Humphris S E, Herzig P M, Miller D J, et al. The internal structure of an active sea-floor massive sulphide deposit [J]. Nature, 1995, 377(6551): 713-716. doi: 10.1038/377713a0
    [28]
    Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data [J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12527-12555. doi: 10.1029/95JB00610
    [29]
    Feely R A, Geiselman T L, Baker E T, et al. Distribution and composition of hydrothermal plume particles from the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge [J]. Journal of Geophysical Research, 1990, 95(B8): 12855-12873. doi: 10.1029/JB095iB08p12855
    [30]
    German C R, Campbell A C, Edmond J M. Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes [J]. Earth & Planetary Science Letters, 1991, 107(1): 101-114.
    [31]
    Rudnicki M D, Elderfield H. A chemical model of the buoyant and neutrally buoyant plume above the TAG Vent Field, 26 degrees N, Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 2939-2957. doi: 10.1016/0016-7037(93)90285-5
    [32]
    Feely R A, Massoth G J, Trefry J H, et al. Composition and sedimentation of hydrothermal plume particles from North Cleft Segment, Juan de Fuca Ridge [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4985-5006. doi: 10.1029/93JB02509
    [33]
    René C, Cervelle B, Cesbron F, et al. Isocubanite, a new definition of the cubic polymorph of cubanite CuFe2S3 [J]. Mineralogical Magazine, 1988, 52(367): 509-514. doi: 10.1180/minmag.1988.052.367.10
    [34]
    Jamieson J W, Hannington M D, Petersen S, et al. Volcanogenic massive sulfides[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of Marine Geosciences. Dordrecht: Springer, 2014: 1-9.
    [35]
    Vaughan D J, Craig J R. Mineral Chemistry of Metal Sulfides[M]. Cambridge: Cambridge University Press, 1978.
  • Related Articles

    [1]LIU Jian, ZHANG Xin, DING Xuan, QIU Jiandong, WANG Hong, AN Yuhui. Sedimentary facies characteristics and dating of the late Quaternary sedimentary sequence in the nearshore coastal area of Nantong, Jiangsu Province, China[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 35-48. DOI: 10.16562/j.cnki.0256-1492.2023051501
    [2]LIU Rongbo, YUAN Xiaodong, LIN Zheyuan, QIU Jiandong, HU Rijun, GAO Junfeng, LIU Longlong, ZHANG Shengjiang. Geochemical characteristics and their geological implication in sediments from Laizhou Bay since late Quaternary[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 100-110. DOI: 10.16562/j.cnki.0256-1492.2022012301
    [3]LIU Dezheng, XIA Fei. Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 210-220. DOI: 10.16562/j.cnki.0256-1492.2021051901
    [4]CHEN Xiaohui, MENG Xiangjun, LI Rihui. Sequence stratigraphy of the Late Quaternary in Liaodong Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 37-47. DOI: 10.16562/j.cnki.0256-1492.2019042301
    [5]WANG Xuemu, CHEN Wanli, XUE Yulong, LIU Gang. The Late Quaternary Carbonate sand deposits at the Xuande Atoll[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 37-45. DOI: 10.16562/j.cnki.0256-1492.2018.06.004
    [6]CHEN Hongjun, HUANG Wenkai, QIU Yan. THE INVERSION OF LATE QUATERNARY PALEO-WATER DEPTH IN SOUTHWESTERN OFFSHORE HAINAN ISLAND[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 128-139. DOI: 10.16562/j.cnki.0256-1492.2017.06.014
    [7]CUI Zhengke, YANG Wenda. LATE QUATERNARY SEQUENCE STRATIGRAPHY AND SEDIMENTARY ENVIRONMENT OF EAST CHINA SEA CONTINENTAL SHELF[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 1-10. DOI: 10.3724/SP.J.1140.2014.04001
    [8]WANG Zhongbo, YANG Shouye, ZHANG Zhixun, LI Rihui, LAN Xianhong, YIN Ping, ZHANG Xunhua. A REVIEW OF THE LATE QUATERNARY SEDIMENTOLOGICAL STUDIES ON THE OUTER SHELF OF THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 1-10. DOI: 10.3724/SP.J.1140.2012.03001
    [9]GE Qian, CHU Fengyou, FANG Yinxia, MENG Xianwei. PALEOENVIRONMENTAL RECORDS OF INFLUENCE OF GAS HYDRATE-DERIVED METHANE ON CLIMATE OF THE LATE QUATERNARY[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 87-94. DOI: 10.3724/SP.J.1140.2010.01087
    [10]WANG Guo-qing, SHI Xue-fa, LI Cong-xian. A REVIEW ON LATE QUATERNARY SEDIMENTARY GEOLOGY OF THE YANGTZE RIVER DELTA[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 131-137.
  • Cited by

    Periodical cited type(4)

    1. 李双林,赵青芳,王建强,董贺平. 南黄海盆地崂山隆起中南部海底沉积物饱和烃类地球化学特征与热成因烃类输入. 地质通报. 2023(05): 669-679 .
    2. 张鹏辉,付奕霖,梁杰,陈建文,张银国,鲍衍君,薛路,李慧君. 南黄海盆地下古生界油气地质条件与勘探前景. 地质通报. 2021(Z1): 243-251 .
    3. 陈春峰,万延周,张伯成,付晓伟,欧戈,王军,陈浩. 南黄海盆地阜宁组烃源岩地层热压生烃特征. 海洋地质前沿. 2021(04): 18-24 .
    4. 张玉玺,陈建文,张银国. 下扬子-南黄海地区下三叠统“错时相”沉积及成因. 海洋地质前沿. 2021(04): 68-76 .

    Other cited types(0)

Catalog

    Article views (5192) PDF downloads (117) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return