Citation: | TANG Jiali, CAO Yuncheng, CHEN Duofu. Simulation of bottom boundaries of abiotic methane hydrate stability zone in some marine serpentinization areas[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 107-115. DOI: 10.16562/j.cnki.0256-1492.2019081701 |
[1] |
Johnson A H. Global resource potential of gas hydrate-a new calculation[C]//Proceedings of the 7th International Conference on Gas Hydrates. Edinburgh, Scotland, United Kingdom, 2011.
|
[2] |
Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. New York: CRC Press, 2008.
|
[3] |
Sloan E D Jr. Clathrate Hydrates of Natural Gases, Revised and Expanded[M]. 2nd ed. New York: CRC Press, 1998.
|
[4] |
Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393. doi: 10.1098/rsta.2010.0065
|
[5] |
Kennett J P, Cannariato K G, Hendy I L, et al. The clathrate gun hypothesis[M]//Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. Washington, DC: American Geophysical Union, 2003, 54: 105-107.
|
[6] |
Davie M K, Buffett B A. Sources of methane for marine gas hydrate: inferences from a comparison of observations and numerical models [J]. Earth and Planetary Science Letters, 2003, 206(1-2): 51-63. doi: 10.1016/S0012-821X(02)01064-6
|
[7] |
苏正, 陈多福. 海洋天然气水合物的类型及特征[J]. 大地构造与成矿学, 2006, 30(2):256-264. [SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments [J]. Geotectonica et Metallogenia, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016
|
[8] |
Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution, and Detection[M]. Washington, D. C.: American Geophysical Union, 2001: 67-84.
|
[9] |
Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges [J]. Comptes Rendus Geoscience, 2003, 335(10-11): 825-852. doi: 10.1016/j.crte.2003.08.006
|
[10] |
Evans B W, Hattori K, Barronet A. Serpentinite: What, why, where [J]. Elements, 2013, 9(2): 99-106. doi: 10.2113/gselements.9.2.99
|
[11] |
Charlou J L, Fouquet Y, Bougault H, et al. Intense CH<sub>4</sub> plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 1998, 62(13): 2323-2333. doi: 10.1016/S0016-7037(98)00138-0
|
[12] |
McCollom M T. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa [J]. Journal of Geophysical Research: Planets, 1999, 104(E12): 30729-30742. doi: 10.1029/1999JE001126
|
[13] |
Proskurowski G, Lilley M D, Seewald S J, et al. Abiogenic hydrocarbon production at Lost City Hydrothermal Field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
|
[14] |
Bradley A S, Summons R E. Multiple origins of methane at the Lost City Hydrothermal Field [J]. Earth and Planetary Science Letters, 2010, 297(1-2): 34-41. doi: 10.1016/j.jpgl.2010.05.034
|
[15] |
汪小妹, 曾志刚, 欧阳荷根, 等. 大洋橄榄岩的蛇纹岩石化研究进展评述[J]. 地球科学进展, 2015, 25(6):605-616. [WANG Xiaomei, ZENG Zhigang, OUYANG Hegen, et al. Review of progress in serpentinization research of oceanic peridotites [J]. Advances in Earth Science, 2015, 25(6): 605-616.
|
[16] |
黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7):1901-1907. [HUANG Ruifang, SUN Weidong, DING Xing, et al. Formation of hydrogen gas and alkane during peridotite serpentinization [J]. Acta Petrologica Sinica, 2015, 31(7): 1901-1907.
|
[17] |
McCollom T M, Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks [J]. Geochimica Et Cosmochimica Acta, 2009, 73(3): 856-875. doi: 10.1016/j.gca.2008.10.032
|
[18] |
Rajan A, Mienert J, Bünz S, et al. Potential serpentinization, degassing, and gas hydrate formation at a young (< 20 Ma) sedimented ocean crust of the Arctic Ocean ridge system [J]. Journal of Geophysical Research-Solid Earth, 2012, 117(B3): B03102.
|
[19] |
Johnson J E, Mienert J, Plaza-Faverola A, et al. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates [J]. Geology, 2015, 43(5): 371-374. doi: 10.1130/G36440.1
|
[20] |
Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
|
[21] |
Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2006, 70(14): 3625-3645. doi: 10.1016/j.gca.2006.04.016
|
[22] |
Schrenk M O, Brazelton W J, Lang S Q. Serpentinization, carbon, and deep life[M]//Carbon in Earth. Chantilly: Mineralogical Society of America, 2013, 75: 575-606.
|
[23] |
Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the ocean drilling program: Initial Reports 125[R]. College Station, TX: Ocean Drilling Program, 1990.
|
[24] |
王先彬, 欧阳自远, 卓胜广, 等. 蛇纹石化作用、非生物成因有机化合物与深部生命[J]. 中国科学: 地球科学, 2014, 57(5):878-887. [WANG Xianbin, OUYANG Ziyuan, ZHUO Shengguang, et al. Serpentinization, abiogenic organic compounds, and deep life [J]. Science China: Earth Sciences, 2014, 57(5): 878-887. doi: 10.1007/s11430-014-4821-8
|
[25] |
Dmitriev L V, Bazylev B A, Silantiev S A, et al. Hydrogen and methane formation with serpentization of mantle hyperbasite of the ocean and oil generation [J]. Russian Journal of Earth Sciences, 2000, 1(6): 511-519. doi: 10.2205/2000ES000030
|
[26] |
Lupton J, Butterfield D, Lilley M, et al. Submarine venting of liquid carbon dioxide on a Mariana Arc volcano [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08007.
|
[27] |
Sun R, Duan Z H. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments [J]. Chemical Geology, 2007, 244(1-2): 248-262. doi: 10.1016/j.chemgeo.2007.06.021
|
[28] |
Tishchenko P, Hensen C, Wallmann K, et al. Calculation of the stability and solubility of methane hydrate in seawater [J]. Chemical Geology, 2005, 219(1-4): 37-52. doi: 10.1016/j.chemgeo.2005.02.008
|
[29] |
Dickens G R, Quinby-Hunt M S. Methane hydrate stability in seawater [J]. Geophysical Research Letters, 1994, 21(19): 2115-2118. doi: 10.1029/94GL01858
|
[30] |
Brown K M, Bangs N L, Froelich P N, et al. The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 471-483. doi: 10.1016/0012-821X(95)00243-6
|
[31] |
Fryer P, Wheat C G, Williams T, et al. Proceedings of the ocean internation drilling program: Initial Reports 366[R]. College Station, TX: Ocean Drilling Program, 2018.
|
[32] |
Myhre, A M, Thiede J, Firth J V. Proceedings of the ocean internation drilling program: Initial Reports 151[R]. College Station, TX, 1995.
|
[33] |
Früh-Green G L, Orcutt B N, Green S L, et al. Proceedings of the ocean drilling program: Initial Reports 357[R]. College Station, TX, 2017.
|
[34] |
Fryer P. Serpentinite mud volcanism: observations, processes, and implications[M]//Annual Review of Marine Science. Palo Alto: Annual Reviews, 2012, 4: 345-373.
|
[35] |
Wheat C G, Fryer P, Fisher A T, et al. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 401-409. doi: 10.1016/j.jpgl.2007.11.057
|
[36] |
Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica Et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037
|
[37] |
Salisbury M H, Shinohara M, Richter C, et al. Proceedings of the ocean drilling program: Initial Reports 195[R]. College Station, TX: Ocean Drilling Program, 2002.
|
[38] |
丁兴, 刘志锋, 黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究-跨学科视野中的工程, 2016, 8(3):258-268. [DING Xing, LIU Zhifeng, HUANG Ruifang, et al. Water-rock interaction in oceanic subduction zone: Serpentinzation [J]. Journal of Engineering Studies, 2016, 8(3): 258-268.
|
[39] |
张振国, 方念乔, 高莲凤, 等. 超慢速扩张洋脊: 海洋地学研究新领域[J]. 海洋地质动态, 2007, 23(4):17-20. [ZHANG Zhenguo, FANG Nianqiao, GAO Lianfeng, et al. The ultraslow-spreading ridge: new field of the marine geology [J]. Marine Geology Letters, 2007, 23(4): 17-20. doi: 10.3969/j.issn.1009-2722.2007.04.005
|
[40] |
Snow J E, Edmonds H N. Ultraslow-spreading ridges: rapid paradigm changes [J]. Oceanography, 2007, 20(1): 90-101. doi: 10.5670/oceanog.2007.83
|
[41] |
Klenke M, Schenke H W. A new bathymetric model for the central Fram Strait [J]. Marine Geophysical Researches, 2002, 23(4): 367-378. doi: 10.1023/A:1025764206736
|
[42] |
Westvig I M. Structural and stratigraphic setting and fluid flow features of the svyatogor ridge, a sediment drift south of the Molloy transform[D]. Master Dissertation of UiT The Arctic University of Norway, 2015.
|
[43] |
Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N [J]. Nature, 2001, 412(6843): 145-149. doi: 10.1038/35084000
|
[44] |
Früh-Green G L, Kelley D, Bernasconi M S, et al. 30, 000 years of hydrothermal activity at the Lost City vent field [J]. Science, 2003, 301(5632): 495-498. doi: 10.1126/science.1085582
|
[45] |
Lowell R P, Rona P A. Seafloor hydrothermal systems driven by the serpentinization of peridotite [J]. Geophysical Research Letters, 2002, 29(11): 26-1-26-4.
|
[46] |
Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.
|
[47] |
张继, 李海平, 陈青, 等. 俯冲带研究进展与问题[J]. 地质调查与研究, 2015, 38(1):18-27, 34. [ZHANG Ji, LI Haiping, CHEN Qing, et al. Review on the research of subduction zone [J]. Geological Survey and Research, 2015, 38(1): 18-27, 34. doi: 10.3969/j.issn.1672-4135.2015.01.003
|
[48] |
郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-681. [ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-681. doi: 10.1007/s11430-015-5258-4
|
[49] |
臧绍先, 宁杰远. 西太平洋俯冲带的研究及其动力学意义[J]. 地球物理学报, 1996, 39(2):188-202. [ZANG Shaoxian, NING Jieyuan. Study on the subduction zone in western Pacific and its implication for the geodynamics [J]. Acta Geophysica Sinica, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006
|
[50] |
Allen D E, Seyfried W E Jr. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1347-1354. doi: 10.1016/j.gca.2003.09.003
|
[51] |
Proskurowski G, Liley M D, Kelley D S, et al. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer [J]. Chemical Geology, 2006, 229(4): 331-343. doi: 10.1016/j.chemgeo.2005.11.005
|
[52] |
Wei M, Sandwell D. Estimates of heat flow from Cenozoic seafloor using global depth and age data [J]. Tectonophysics, 2006, 417(3-4): 325-335. doi: 10.1016/j.tecto.2006.02.004
|
[53] |
Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach [J]. Energies, 2012, 5(7): 2449-2498. doi: 10.3390/en5072449
|
[54] |
Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? [J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002
|
[55] |
Xu W Y. Modeling dynamic marine gas hydrate systems [J]. American Mineralogist, 2004, 89(8-9): 1271-1279. doi: 10.2138/am-2004-8-916
|
[56] |
Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics [J]. Terrestrial Atmospheric & Oceanic Sciences, 2006, 17(4): 723-737.
|
[57] |
Cao Y C, Chen D F, Cathles L M. A kinetic model for the methane hydrate precipitated from venting gas at cold seep sites at Hydrate Ridge, Cascadia margin, Oregon [J]. Journal of Geophysical Research-Solid Earth, 2013, 118(9): 4669-4681. doi: 10.1002/jgrb.50351
|
[58] |
Borowski W S, Paull C K, Ussler W Ⅲ. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
|
[59] |
Bhatnagar G, Chatterjee S, Chapman W G, et al. Analytical theory relating the depth of the sulfate-methane transition to gas hydrate distribution and saturation [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03003.
|
[60] |
Tréhu A M, Bohrmann G, Rack F R, et al. Proceedings of the ocean drilling program: Initial Reports 204[R]. College Station, TX: Ocean Drilling Program, 2003.
|
[61] |
Riedel M, Collett T S, Malone M J, et al. Proceedings of the integrated ocean drilling: Initial Reports 311[R]. College Station, TX: Ocean Drilling Program, 2006.
|
[62] |
Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge) [J]. Chemical Geology, 1999, 153(1-4): 53-79. doi: 10.1016/S0009-2541(98)00152-1
|
[63] |
曹运诚, 陈多福. 海洋天然气水合物发育顶界的模拟计算[J]. 地球物理学报, 2014, 57(2):618-627. [CAO Yuncheng, CHEN Duofu. Modeling calculation of top occurrence of marine gas hydrates [J]. Chinese Journal of Geophysics, 2014, 57(2): 618-627. doi: 10.6038/cjg20140225
|
[64] |
Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204 [J]. Earth and Planetary Science Letters, 2004, 222(3-4): 845-862. doi: 10.1016/j.jpgl.2004.03.035
|
1. |
庞雄奇,胡涛,蒲庭玉,徐帜,王恩泽,汪文洋,李昌荣,张兴文,刘晓涵,吴卓雅,王通,赵正福,庞礴,鲍李银. 中国南海天然气水合物资源产业化发展面临的风险与挑战. 石油学报. 2024(07): 1044-1060 .
![]() | |
2. |
汤加丽,曹运诚,陈多福. 马里亚纳弧前蛇纹岩泥火山无机成因甲烷–氢气水合物形成条件与稳定带发育特征. 地球化学. 2022(02): 194-201 .
![]() |