YANG Pengcheng, LI Hao, LIU Feng, LI Qian. Formation mechanism of condensate oil and waxy oil in Structure X of Xihu Depression[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 177-187. DOI: 10.16562/j.cnki.0256-1492.2019070405
Citation: YANG Pengcheng, LI Hao, LIU Feng, LI Qian. Formation mechanism of condensate oil and waxy oil in Structure X of Xihu Depression[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 177-187. DOI: 10.16562/j.cnki.0256-1492.2019070405

Formation mechanism of condensate oil and waxy oil in Structure X of Xihu Depression

More Information
  • Received Date: July 03, 2019
  • Revised Date: August 11, 2019
  • Available Online: December 23, 2019
  • Oil in the Structure X of the Xihu Depression can be divided into two groups based on the differences in physical properties. One is the condensate oil, which is characterized by low density and low wax content; and the other is the waxy oil, which is characterized by medium density and high wax content. Geochemical characteristics of crude oil were studied in details in order to define the causes of the differences. It is so obvious that there are great differences between condensate oil and waxy oil in saturated hydrocarbon chromatography characters. However, the characteristics of sterane, terpane, and carbon isotope of condensate oil are as the same as the waxy oil. It means that they come from same source, and secondary alteration is the real cause to the difference in physical properties. Detailed correlation of lighter hydrocarbon chromalogram and fingerprint parameters the two oils suggest the following: (1) There is a mirror image relationship of total hydrocarbon chromatography between condensate oil and waxy oil. (2) Condensate oil is characterized by high index of nC7/MCyC6 and low index of Tol/nC7, whereas waxy oil shows an opposite pattern. (3) There are covariant relation of the index of nCm+1/nCm of N-alkanes between the condensate oil and the waxy oil, suggesting that oil has suffered from gas invasion. The condensate is the results of evaporative fractionation, and the waxy is the remainder.
  • [1]
    陈义才, 沈忠民, 李延军, 等. 塔里木盆地轮南低隆凝析气藏特征及成藏机理分析[J]. 成都理工学院学报, 2002, 29(5):481-486. [CHEN Yicai, SHEN Zhongmin, LI Yanjun, et al. Formation mechanism and formation conditions of condensate pools in Lunnan low-uplift of Tarim Basin [J]. Journal of Chengdu University of Technology, 2002, 29(5): 481-486. doi: 10.3969/j.issn.1671-9727.2002.05.002
    [2]
    武晓玲. 东濮凹陷深层凝析气藏成藏模式研究[D]. 中国地质大学(北京), 2006: 1-93.

    WU Xiaoling, Study on forming models of deep condensate gas pool in Dongpu Depression[D]. Beijing: China University of Geosciences, 2006: 1-93.
    [3]
    Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. New York: Springer Verlag, Heidelberg, 1978.
    [4]
    黄汝昌. 中国低熟油及凝析气藏形成与分布规律[M]. 北京: 石油工业出版社, 1997.

    HUANG Ruchang. Formation and Distribution of Low Maturity Oil and Condensate Gas Reservoirs in China[M]. Beijing: Petroleum Industry Press, 1997.
    [5]
    周兴熙. 塔里木盆地凝析气的相态成因[J]. 天然气工业, 1996, 16(2):5-8, 100. [ZHOU Xingxi. Phase genesis of condensate gas in Talimu Basin [J]. Natural Gas Industry, 1996, 16(2): 5-8, 100.
    [6]
    蒋有录, 常振恒, 鲁雪松, 等. 东濮凹陷古近系凝析气藏成因类型及其分布特征[J]. 中国石油大学学报: 自然科学版, 2008, 32(5):28-34. [JIANG Youlu, CHANG Zhenheng, LU Xuesong, et al. Genetic types and distribution of paleogene condensate gas pools in Dongpu Depression [J]. Journal of China University of Petroleum, 2008, 32(5): 28-34.
    [7]
    吴楠, 蔡忠贤, 杨海军, 等. 轮南低凸起气洗作用响应及定量评价[J]. 地球科学—中国地质大学学报, 2009, 34(3):486-492. [WU Nan, CAI Zhongxian, YANG Haijun, et al. Quantitative evaluation and the geochemical responses of gas washing in Lunnan Petroleum Province [J]. Earth Science—Journal of China University of Geosciences, 2009, 34(3): 486-492.
    [8]
    黄合庭, 黄保家, 黄义文, 等. 南海西部深水区大气田凝析油成因与油气成藏机制——以琼东南盆地陵水17-2气田为例[J]. 石油勘探与开发, 2017, 44(3):380-388. [HUANG Heting, HUANG Baojia, HUANG Yiwen, et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in Western South China Sea: A case study of Lingshui 17-2 gas field in Qiongdongnan Basin, South China Sea [J]. Petroleum Exploration and Development, 2017, 44(3): 380-388.
    [9]
    苏洲, 张慧芳, 韩剑发, 等. 塔里木盆地库车坳陷中、新生界高蜡凝析油和轻质油形成及其控制因素[J]. 石油与天然气地质, 2018, 39(6):1255-1269. [SU Zhou, ZHANG Huifang, HAN Jianfa, et al. Origin and controlling factors of Mesozoic-Cenozoic gas condensates with high wax content and high-gravity oil in Kuqa Depression [J]. Oil & Gas Geology, 2018, 39(6): 1255-1269. doi: 10.11743/ogg20180615
    [10]
    陈大钧. 油气田应用化学[M]. 北京: 石油工业出版社, 2006: 308-310.

    CHEN Dajun. Applied Chemistry in Oil and Gas Field[M]. Beijing: Petroleum Industry Press, 2006: 308-310.
    [11]
    Hedberg H D. Significance of high-wax oils with respect to genesis of petroleum [J]. AAPG Bulletin, 1968, 52(5): 736-750.
    [12]
    王飞宇, 郝石生, 何萍, 等. 泌阳凹陷湖相藻类体中藻质素作为高蜡油母质[J]. 科学通报, 1997, 42(11):1193-1197. [WANG Feiyu, HAO Shisheng, HE Ping, et al. Alginin as parent material of high wax oil in lacustrine algae of Biyang Depression [J]. Chinese Science Bulletin, 1997, 42(11): 1193-1197. doi: 10.3321/j.issn:0023-074X.1997.11.022
    [13]
    李素梅, 庞雄奇, 邱桂强, 等. 东营凹陷南斜坡特高蜡油的成因[J]. 石油与天然气地质, 2005, 26(4):480-486. [LI Sumei, PANG Xiongqi, QIU Guiqiang, et al. Origin of superhigh wax content oils in southern slope zone of Dongying Depression [J]. Oil & Gas Geology, 2005, 26(4): 480-486. doi: 10.3321/j.issn:0253-9985.2005.04.014
    [14]
    陈建平, 邓春萍, 王绪龙, 等. 准噶尔盆地南缘凝析油、蜡质油与稠油的形成机理[J]. 中国科学: 地球科学, 2017, 60(5):972-991. [CHEN Jianping, DENG Chunping, WANG Xulong, et al. Formation mechanism of condensates, waxy and heavy oils in the southern margin of Junggar Basin, NW China [J]. Science China Earth Sciences, 2017, 60(5): 972-991.
    [15]
    傅宁, 李友川, 陈桂华, 等. 东海西湖凹陷油气" 蒸发分馏”成藏机制[J]. 石油勘探与开发, 2003, 30(2):39-42. [FU Ning, LI Youchuan, CHEN Guihua, et al. Pooling mechanisms of " Evaporating Fractionation” of oil and gas in the Xihu Depression, East China Sea [J]. Petroleum Exploration and Development, 2003, 30(2): 39-42. doi: 10.3321/j.issn:1000-0747.2003.02.010
    [16]
    单超, 叶加仁, 曹强, 等. 西湖凹陷孔雀亭气田成藏主控因素[J]. 海洋地质与第四纪地质, 2015, 35(1):135-144. [SHAN Chao, YE Jiaren, CAO Qiang, et al. Controlling factors for gas accumulation in Kongqueting gas field of Xihu Sag [J]. Marine Geology & Quaternary Geology, 2015, 35(1): 135-144.
    [17]
    苏奥, 陈红汉. 东海盆地西湖凹陷宝云亭气田油气成藏史——来自流体包裹体的证据[J]. 石油学报, 2015, 36(3):300-309. [SU Ao, CHEN Honghan. Accumulation history of Baoyunting gas field in the Xihu Sag, East China Sea Basin: from evidence of fluid inclusions [J]. Acta Petrolei Sinica, 2015, 36(3): 300-309. doi: 10.7623/syxb201503005
    [18]
    李水福, 何生, 张冬梅. 南阳凹陷高蜡原油的地球化学特征[J]. 新疆石油地质, 2006, 27(4):414-418. [LI Shuifu, HE Sheng, ZHANG Dongmei. Organic geochemical characteristics of high wax oils in Nanyang Sag [J]. Xinjiang Petroleum Geology, 2006, 27(4): 414-418. doi: 10.3969/j.issn.1001-3873.2006.04.007
    [19]
    傅宁. 东海盆地西湖凹陷煤系烃源岩及凝析油中的二萜化合物[J]. 中国海上油气(地质), 1994, 8(1):21-28. [FU Ning. Diterpenoid compounds in coal measures and condensates in Xihu Sag of East China Sea Basin [J]. China Offshore Oil and Gas (Geology), 1994, 8(1): 21-28.
    [20]
    钱门辉, 西湖凹陷煤系烃源岩生烃特征研究[D]. 中国地质大学(北京), 2010.

    QIAN Menhui. Model research of generation of hydrocarbon coal source rock in Xihu Depression[D]. Beijing: China University of Geosciences, 2010.
    [21]
    戴金星, 宋岩. 煤成油的若干有机地球化学特征[J]. 石油勘探与开发, 1987, 14(5):38-45. [DAI Jinxing, SONG Yan. Some geochemical characteristics of the coaliferous oil [J]. Petroleum Exploration and Development, 1987, 14(5): 38-45.
    [22]
    戴金星. 各类烷烃气的鉴别[J]. 中国科学B辑, 1992, 22(2):185-193. [DAI Jinxing. Identification of alkane gases [J]. Science in China Series B: Chemistry, 1992, 22(2): 185-193. doi: 10.3321/j.issn:1006-9240.1992.02.003
    [23]
    戴金星, 李剑, 罗霞, 等. 鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比[J]. 石油学报, 2005, 26(1):18-26. [DAI Jinxing, LI Jian, LUO Xia, et al. Alkane carbon isotopic composition and gas source in giant gas fields of Ordos Basin [J]. Acta Petrolei Sinica, 2005, 26(1): 18-26. doi: 10.3321/j.issn:0253-2697.2005.01.004
    [24]
    戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报, 2018, 63(14):1291-1305. [DAI Jinxing. Coal-derived gas theory and its discrimination [J]. Chinese Science Bulletin, 2018, 63(14): 1291-1305.
    [25]
    叶军, 郭迪孝. 东海西湖凹陷天然气地化特征[J]. 石油实验地质, 1996, 18(2):174-181, 145. [YE Jun, GUO Dixiao. Geochemical characters of the natural gas in West Lake Depression, the East China Sea [J]. Experimental Petroleum Geology, 1996, 18(2): 174-181, 145. doi: 10.11781/sysydz199602174
    [26]
    Meulbroek P, Cathles III L, Whelan J. Phase fractionation at South Eugene Island Block 330 [J]. Organic Geochemistry, 1998, 29(1-3): 223-239. doi: 10.1016/S0146-6380(98)00180-6
    [27]
    黄海平, 张水昌, 苏爱国. 油气运移聚集过程中的地球化学作用[J]. 石油实验地质, 2001, 23(3):278-284. [HUANG Haiping, ZHANG Shuichang, SU Aiguo. Geochemical processes in petroleum migration and accumulation [J]. Petroleum Geology & Experiment, 2001, 23(3): 278-284. doi: 10.3969/j.issn.1001-6112.2001.03.006
    [28]
    Thompson K F M. Fractionated aromatic petroleums and the generation of gas-condensates [J]. Organic Geochemistry, 1987, 11(6): 573-590. doi: 10.1016/0146-6380(87)90011-8
    [29]
    Kissin Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2445-2457. doi: 10.1016/0016-7037(87)90296-1
    [30]
    申家年, 卢双舫. 气洗作用对油气组分影响的理论探讨[J]. 地球化学, 2005, 34(2):161-172. [SHEN Jianian, LU Shuangfang. Influence of gas washing on oil-gas composition [J]. Geochimica, 2005, 34(2): 161-172. doi: 10.3321/j.issn:0379-1726.2005.02.009

Catalog

    Article views (2376) PDF downloads (38) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return