YU Xiaoxiao, GU Dongqi, YAN Wenwen, SUN Huifeng, LI Ping, ZHANG Zhiwei, QU Hongbao. Application of geostatistical grain size trend analysis in the Luanhe River Subaqueous Delta[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 204-213. DOI: 10.16562/j.cnki.0256-1492.2019060701
Citation: YU Xiaoxiao, GU Dongqi, YAN Wenwen, SUN Huifeng, LI Ping, ZHANG Zhiwei, QU Hongbao. Application of geostatistical grain size trend analysis in the Luanhe River Subaqueous Delta[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 204-213. DOI: 10.16562/j.cnki.0256-1492.2019060701

Application of geostatistical grain size trend analysis in the Luanhe River Subaqueous Delta

More Information
  • Received Date: June 06, 2019
  • Revised Date: September 03, 2019
  • Available Online: May 25, 2020
  • With the grain size data of 85 surface sediment samples collected from the Luanhe River Subaqueous Delta (LRSD), we studied the sediment transportation trend using the geostatistical grain size trend analysis method (GSTA) in this paper. It is revealed that the semi-variance value of mean grain size in a regular grid increases with distance until the distance reaches 0.09 decimal degree, while the irregular data shows no such a correlation with distance. Thus, the decimal degree of 0.09 is chosen as the character distance for grain size trend analysis. It is further revealed that the direction of the semi-variance is 55°, which is parallel to the tidal current, suggesting that the character distance is tide related. Geostatistical GSTA result further indicates that the net sediment transport trend direction in the south area, where the water depth is less than 12 m, is in southwest, whereas that in the north area, where the depth is less than 12 m, is in west and southwest directions. In the area with water depth between 12 and 15 m, the net sediment transport trend is in southwestern direction, roughly parallel to the coast line. In the area under water depth more than 15 m, the net sediment transport trend is northwest in direction in the southern part, but southeast direction in the northern part. The grain size net sediment transport trends mentioned above are similar to the field measured tidal current, residual current, and sediment transport directions suggesting a tide predominated sediment transportation. However, relict sediments, wave, river and bedform are more complex, which may give influences the grain size net sediment transport trend. The research results of the net sediment transport trend in LRSD may reveal the influence of tidal current. However, for an explanation to relict sediments, further researches are required.
  • [1]
    Yamashita S, Naruse H, Nakajo T. Reconstruction of sediment-transport pathways on a modern microtidal coast by a new grain-size trend analysis method [J]. Progress in Earth and Planetary Science, 2018, 5: 7. doi: 10.1186/s40645-018-0166-9
    [2]
    McCave I N. Grain-size trends and transport along beaches: example from eastern England [J]. Marine Geology, 1978, 28(1-2): M43-M51. doi: 10.1016/0025-3227(78)90092-0
    [3]
    McLaren P. An interpretation of trends in grain size measures [J]. Journal of Sedimentary Research, 1981, 51(2): 611-624.
    [4]
    McClaren P, Ren P. Sediment transport and its environmental implications in the lower Fraser River and Fraser delta[M]. Environment Canada: Environmental Conservation, 1995.
    [5]
    Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors” [J]. Sedimentary Geology, 1992, 81(1-2): 47-60. doi: 10.1016/0037-0738(92)90055-V
    [6]
    Ma F, Wang Y P, Li Y, et al. The application of geostatistics in grain size trend analysis: A case study of eastern Beibu Gulf [J]. Journal of Geographical Sciences, 2010, 20(1): 77-90. doi: 10.1007/s11442-010-0077-1
    [7]
    Sánchez A, Choumiline E, López-Ortiz B E, et al. Sediment transport patterns in Magdalena Bay, Baja California Sur, Mexico, inferred from grain-size trends [J]. Latin American Journal of Aquatic Research, 2010, 38(2): 167-177. doi: 10.3856/vol38-issue2-fulltext-1
    [8]
    Choi T J, Choi J Y, Park J Y, et al. The effects of nourishments using the grain-size trend analysis on the intertidal zone at a sandy macrotidal beach [J]. Journal of Coastal Research, 2018, 85(S1): 426-430.
    [9]
    De Falco G, Molinaroli E, Baroli M, et al. Grain size and compositional trends of sediments from <italic>Posidonia oceanica</italic> meadows to beach shore, Sardinia, western Mediterranean [J]. Estuarine, Coastal and Shelf Science, 2003, 58(2): 299-309. doi: 10.1016/S0272-7714(03)00082-9
    [10]
    Nugroho S H, Putra P S. Spatial distribution of grain size and depositional process in tidal area along Waikelo Beach, Sumba [J]. Marine Georesources & Geotechnology, 2017, 36(3): 299-307.
    [11]
    Pedreros R, Howa H, Michel D. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas [J]. Marine geology, 1996, 135(1-4): 35-49. doi: 10.1016/S0025-3227(96)00042-4
    [12]
    Clarke D W, Boyle J F, Chiverrell R C, et al. A sediment record of barrier estuary behaviour at the mesoscale: interpreting high-resolution particle size analysis [J]. Geomorphology, 2014, 221: 51-68. doi: 10.1016/j.geomorph.2014.05.029
    [13]
    Hegde V S, Nayak S, Krishnaprasad P, et al. Evolution of diverging spits across the tropical river mouths, central west coast of India [J]. Journal of Coastal Zone Management, 2015, 18(2): 1000402.
    [14]
    Li T, Li T J. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis [J]. Geo-Marine Letters, 2018, 38(2): 167-178. doi: 10.1007/s00367-017-0518-2
    [15]
    Cheng P, Gao S, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis [J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 203-212. doi: 10.1016/j.ecss.2003.12.009
    [16]
    程鹏, 高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼, 2000, 31(6):604-615. [CHENG Peng, GAO Shu. Net sediment transport patterns over the northwestern Yellow Sea, based upon grain size trend analysis [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 604-615. doi: 10.3321/j.issn:0029-814X.2000.06.004
    [17]
    Poizot E, Méar Y, Biscara L. Sediment Trend Analysis through the variation of granulometric parameters: A review of theories and applications [J]. Earth Science Reviews, 2008, 86(1-4): 15-41. doi: 10.1016/j.earscirev.2007.07.004
    [18]
    Gao S, Collins M, Mclaren P, et al. A critique of the "McLaren Method" for defining sediment transport paths; discussion and reply [J]. Journal of Sedimentary Research, 1991, 61(1): 143-147. doi: 10.1306/D42676A9-2B26-11D7-8648000102C1865D
    [19]
    Gao S, Xie Q C, Feng Y J. Fine-grained sediment transport and sorting by tidal exchange in Xiangshan Bay, Zhejiang, China [J]. Estuarine, Coastal and Shelf Science, 1990, 31(4): 397-409. doi: 10.1016/0272-7714(90)90034-O
    [20]
    Gao S, Collins M. Tidal Inlet equilibrium, in relation to cross-sectional area and sediment transport patterns [J]. Estuarine, Coastal and Shelf Science, 1994, 38(2): 157-172. doi: 10.1006/ecss.1994.1010
    [21]
    Poizot E, Mear Y, Thomas M, et al. The application of geostatistics in defining the characteristic distance for grain size trend analysis [J]. Computers & Geosciences, 2006, 32(3): 360-370.
    [22]
    高抒. 沉积物粒径趋势分析: 原理与应用条件[J]. 沉积学报, 2009, 27(5):826-836. [GAO Shu. Grain size trend analysis: principle and applicability [J]. Acta Sedimentologica Sinica, 2009, 27(5): 826-836.
    [23]
    高善明, 李元芳, 安凤桐, 等. 滦河三角洲滨岸沙体的形成和海岸线变迁[J]. 海洋学报, 1980, 2(4):102-114. [GAO Shanming, LI Yuanfang, AN Fengtong, et al. The formation of sand bars on the Luanhe River Delta and the change of the coast line [J]. Acta Oceanologica Sinica, 1980, 2(4): 102-114.
    [24]
    李从先, 陈刚, 王传广, 等. 论滦河冲积扇-三角洲沉积体系[J]. 石油学报, 1984, 5(4):27-36. [LI Congxian, CHEN Gang, WANG Guangchuan, et al. On the Luanhe River Alluvial Fan-delta complex [J]. Acta Petrolei Sinica, 1984, 5(4): 27-36. doi: 10.7623/syxb198404004
    [25]
    薛春汀. 滦河冲积扇-三角洲的范围和类型及其演化[J]. 海洋地质与第四纪地质, 2016, 36(6):13-22. [XUE Chunting. Extents, type and evolution of Luanhe River Fan-delta system, China [J]. Marine Geology & Quaternary Geology, 2016, 36(6): 13-22.
    [26]
    王保民. 河北省海洋资源调查与评价综合报告[M]. 北京: 海洋出版社, 2007.

    WANG Baomin. Comprehensive Report on Investigation and Evaluation of Marine Resources in Hebei Province[M]. Beijing: Ocean Presee, 2007.
    [27]
    王保民. 河北省海洋资源调查与评价专题报告(上册、下册)[M]. 北京: 海洋出版社, 2007. [

    WANG Baomin. Thematic Reports (Volume I, Volume II) on Investigation and Evaluation of Marine Resources in Hebei Province[M]. Beijing: Ocean Presee, 2007. ]
    [28]
    康雪宁, 印萍, 刘金庆. 我国中小河流入海水沙变化对人类活动响应——以滦河为例[J]. 海洋地质与第四纪地质, 2016, 36(6):1-6. [KANG Xuening, YIN Ping, LIU Jinqing. Variations in water and sediment discharges of mediam and small rivers and their response to human activities: a case study on the Luan River [J]. Marine Geology & Quaternary Geology, 2016, 36(6): 1-6.
    [29]
    黎刚, 殷勇. 滦河下游河道及三角洲地貌的近期演化[J]. 地理研究, 2010, 29(9):1606-1615. [LI Gang, YIN Yong. Recent geomorphological evolution of downstream channel and delta of Luanhe River [J]. Geographical Research, 2010, 29(9): 1606-1615.
    [30]
    Mcmanus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford, UK: Blackwell Scientific Publications, 1988: 63-85.
    [31]
    Poizot E, Méar Y. eCSedtrend: A new software to improve sediment trend analysis [J]. Computers & Geosciences, 2008, 34(7): 827-837.
    [32]
    Yu X X, Li T G, Gu D Q, et al. Sediment transport in the Luanhe River delta: grain size trend analysis [J]. Journal of Oceanology and Limnology, 2019, 37(3): 982-997. doi: 10.1007/s00343-019-8156-3
    [33]
    Ashley G M. Interpretation of Polymodal Sediments [J]. The Journal of Geology, 1978, 86(4): 411-421. doi: 10.1086/649710
    [34]
    孙东怀, 安芷生, 苏瑞侠, 等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展, 2001, 11(3):269-276. [SUN Donghuai, AN Zhisheng, SU Ruixia, et al. Method and application of numerical partitioning of the sediment components in paleoclimate environments [J]. Progress in Natural Science, 2001, 11(3): 269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008
    [35]
    孙东怀, 鹿化煜, Rea D, et al. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2000, 18(3):327-335. [SUN Donghuai, LU Huayu, Rea D, et al. Bimode Grain-size distribution of Chinese loess and its paleoclimate implication [J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335. doi: 10.3969/j.issn.1000-0550.2000.03.001
    [36]
    段晓勇, 印萍, 刘金庆, 等. 滦河口表层沉积物中重金属和多环芳烃的分布、来源及风险评估[J]. 中国环境科学, 2016, 36(4):1198-1206. [DUAN Xiaoyong, YIN Ping, LIU Jinqing, et al. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Luan River estuary: distributions, sources and ecological risk assessments [J]. China Environmental Science, 2016, 36(4): 1198-1206. doi: 10.3969/j.issn.1000-6923.2016.04.036
    [37]
    刘金庆, 印萍, 张勇, 等. 滦河口沉积物重金属分布及生态风险评价[J]. 海洋地质与第四纪地质, 2016, 36(5):43-52. [LIU Jinqing, YIN Ping, ZHANG Yong, et al. Distribution of heavy metals in surface sediments of the Luanhe River Estuary and ecological risk assessment [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 43-52.
    [38]
    乔淑卿, 石学法, 王国庆, 等. 渤海底质沉积物粒度特征及输运趋势探讨[J]. 海洋学报, 2010, 32(4):139-147. [QIAO Shuqing, SHI Xuefa, WANG Guoqing, et al. Discussion on grain-size characteristics of seafloor sediment and transport pattern in the Bohai Sea [J]. Acta Oceanologica Sinica, 2010, 32(4): 139-147.
    [39]
    Xue Z, Feng A P, Yin P, et al. Coastal erosion induced by human activities: a northwest Bohai Sea case study [J]. Journal of Coastal Research, 2009, 25(3): 723-733.
    [40]
    刘振夏. 现代滦河三角洲的影响因素和沉积物分区[J]. 海洋科学进展, 1989, 7(4):55-64. [LIU Zhenxia. The influential factors and zoning of the modern Luanhe River Delta [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1989, 7(4): 55-64.
    [41]
    姜太良, 房宪英, 徐洪达, 等. 滦河口径流量和滦河口输沙分析[J]. 海洋科学进展, 1986, 4(4):100-113. [JIANG Tailiang, FANG Xianying, XU Hongda, et al. Analysis of the water discharge and sediment load in the Luanhe River Estuary [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1986, 4(4): 100-113.
  • Related Articles

    [1]ZHANG Lan, LI Wenjun, CHANG Yinshan, WU Jiapeng, WAN Lifen, LI Kun. Characteristics of major unconformities and their control over sedimentation in rifting stage: A case from the East China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 30-39. DOI: 10.16562/j.cnki.0256-1492.2019061401
    [2]YU Junhui, YAN Pin, ZHENG Hongbo, WANG Yanlin, ZHAO Xu. IMAGING OF REFLECTION MOHO IN THE SOUTHWEST SUB-BASIN OF SOUTH CHINA SEA AND ITS GEOLOGICAL IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 75-81. DOI: 10.16562/j.cnki.0256-1492.2017.02.008
    [3]GONG Jianming, LI Gang, YANG Changqing, YANG Chuansheng, WANG Wenjuan, JIANG Yubo, XU Liming, DENG Ke. DISTRIBUTION OF TRIASSIC STRATA IN THE SOUTHERN EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 119-124. DOI: 10.3724/SP.J.1140.2012.03119
    [4]LI Gang, GONG Jianming, YANG Changqing, YANG Chuansheng, WANG Wenjuan, WANG Hairong, LI Sanzhong. STRATIGRAPHIC FEATURES OF THE MESOZOIC “GREAT EAST CHINA SEA” -A NEW EXPLORATION FIELD[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 97-104. DOI: 10.3724/SP.J.1140.2012.03097
    [5]WANG Shutian, LI Bin. NEOTECTONIC FEATURES AND MOVEMENT IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150. DOI: 10.3724/SP.J.1140.2010.04141
    [6]HAN Bo, ZHANG Xunhua, MENG Xiangjun. MAGNETIC FIELD AND BASEMENT FEATURES ANALYSIS IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 71-76. DOI: 10.3724/SP.J.1140.2010.01071
    [7]ZHAO Quanhong, JIAN Zhimin, ZHANG Zaixiu, CHENG Xinrong, WANG Ke, ZHENG Hongbo. HOLOCENE PALEOENVIRONMENTAL CHANGES OF THE INNER-SHELF MUD AREA OF THE EAST CHINA SEA: EVIDENCE FROM FORAMINIFERAL FAUNAS[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 75-82. DOI: 10.3724/SP.J.1140.2009.02075
    [8]REN Hui-ru, KANG Jian-cheng, WANG Tian-tian, AN Yan. SPATIAL DISTRIBUTION OF WARM CORE OF KUROSHIO IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 77-84.
    [9]WANG Ke, ZHENG Hong-bo, Maarten Prins, ZHENG Yan. HIGH-RESOLUTION PALEOENVIRONMENTAL RECORD OF THE MUD SEDIMENTS OF THE EAST CHINA SEA INNER SHELF[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 1-10. DOI: 10.3724/SP.J.1140.2008.03001
    [10]LUAN Xi-wu, YUE Bao-jing, LU Yin-tao. SEISMIC CHARACTERISTICS OF GAS HYDRATES IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 91-99.

Catalog

    Article views (2413) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return