Citation: | HONG Jiali, XIAO Wenshen, WANG Rujian, ZHANG Taoliang. Sub sea surface temperatures in the Nordic Seas during the LGM by planktic foraminiferal Mg/Ca temperature reconstructions[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 122-134. DOI: 10.16562/j.cnki.0256-1492.2019022803 |
[1] |
Lynch-Stieglitz J. The Atlantic meridional overturning circulation and abrupt climate change[J]. Annual Review of Marine Science, 2017, 9: 83-104. doi: 10.1146/annurev-marine-010816-060415
|
[2] |
Meland M Y, Jansen E, Elderfield H. Constraints on SST estimates for the northern North Atlantic/Nordic Seas during the LGM[J]. Quaternary Science Reviews, 2005, 24(7-9): 835-852. doi: 10.1016/j.quascirev.2004.05.011
|
[3] |
De Vernal A, Rosell-Melé A, Kucera M, et al. Comparing proxies for the reconstruction of LGM sea-surface conditions in the northern North Atlantic[J]. Quaternary Science Reviews, 2006, 25(21-22): 2820-2834. doi: 10.1016/j.quascirev.2006.06.006
|
[4] |
Hansen B, Østerhus S. North atlantic-nordic seas exchanges[J]. Progress in Oceanography, 2000, 45(2): 109-208. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229210144/
|
[5] |
Blindheim J, Osterhus S. The Nordic Seas, main oceanographic features[J]. Geophysical Monograph-American Geophysical Union, 2005, 158, doi: 10.1029/158GM03.
|
[6] |
Eldevik T, Risebrobakken B, Bjune A E, et al. A brief history of climate-the northern seas from the Last Glacial Maximum to global warming[J]. Quaternary Science Reviews, 2014, 106: 225-246. doi: 10.1016/j.quascirev.2014.06.028
|
[7] |
Smith A C, Wynn P M, Barker P A, et al. North Atlantic forcing of moisture delivery to Europe throughout the Holocene[J]. Scientific Reports, 2016, 6: 24745. doi: 10.1038/srep24745
|
[8] |
Mcmanus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494
|
[9] |
Lynch-Stieglitz J, Adkins J F, Curry W B, et al. Atlantic meridional overturning circulation during the Last Glacial Maximum[J]. Science, 2007, 316(5821): 66-69. doi: 10.1126/science.1137127
|
[10] |
Gherardi J M, Labeyrie L, Nave S, et al. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region[J]. Paleoceanography, 2009, 24(2), PA2204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bafc6f6f099029ef044ac89ab46f42c0
|
[11] |
Lippold J, Luo Y, Francois R, et al. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation[J]. Nature Geoscience, 2012, 5(11): 813-816. doi: 10.1038/ngeo1608
|
[12] |
Hemming S R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1), RG1005. doi: 10.1029-2003RG000128/
|
[13] |
Stanford J D, Rohling E J, Hunter S E, et al. Timing of meltwater pulse 1a and climate responses to meltwater injections[J]. Paleoceanography, 2006, 21(4): 1-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2006PA001340
|
[14] |
Stanford J D, Rohling E J, Bacon S, et al. A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic[J]. Quaternary Science Reviews, 2011, 30(9-10): 1047-1066. doi: 10.1016/j.quascirev.2011.02.003
|
[15] |
Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene Series/Epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (international commission on stratigraphy)[J]. Journal of Quaternary Science, 2012, 27(7): 649-659. doi: 10.1002/jqs.v27.7
|
[16] |
Sejrup H P, Haflidason H, Andrews J T. A Holocene North Atlantic SST record and regional climate variability[J]. Quaternary Science Reviews, 2011, 30(21-22): 3181-3195. doi: 10.1016/j.quascirev.2011.07.025
|
[17] |
Laskar J. Long-term solution for the insolation quantities of the Earth[J]. Proceedings of the International Astronomical Union, 2006, 2(14): 465-465. doi: 10.1017/S1743921307011404
|
[18] |
Nesje A, Matthews J A, Dahl S O, et al. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine sediment records[J]. The Holocene, 2001, 11(3): 267-280. doi: 10.1191/095968301669980885
|
[19] |
Bauch H A, Erlenkeuser H, Spielhagen R F, et al. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30000 yr[J]. Quaternary Science Reviews, 2001, 20(4): 659-678. doi: 10.1016/S0277-3791(00)00098-6
|
[20] |
Rasmussen T L, Thomsen E, S'lubowska M A, et al. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20000 14 C yr BP[J]. Quaternary Research, 2007, 67(1): 100-114. doi: 10.1016/j.yqres.2006.07.002
|
[21] |
Telesiński M M, Spielhagen R F, Lind E M. A high-resolution Lateglacial and Holocene palaeoceanographic record from the Greenland Sea[J]. Boreas, 2014, 43(2): 273-285. doi: 10.1111/bor.2014.43.issue-2
|
[22] |
Husum K, Hald M. Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions[J]. Marine Micropaleontology, 2012, 96: 38-47. http://www.sciencedirect.com/science/article/pii/S0377839813000297
|
[23] |
Kucera M, Weinelt M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005, 24(7-9): 951-998. doi: 10.1016/j.quascirev.2004.07.014
|
[24] |
Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[J]. Colloques Internationaux du CNRS, 1974, 219: 203-209.
|
[25] |
Kozdon R, Eisenhauer A, Weinelt M, et al. Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3), Q03005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008GC002169
|
[26] |
Aagaard-Sørensen S, Husum K, Hald M, et al. Sub sea surface temperatures in the Polar North Atlantic during the Holocene: Planktic foraminiferal Mg/Ca temperature reconstructions[J]. The Holocene, 2014, 24(1): 93-103. doi: 10.1177/0959683613515730
|
[27] |
Spielhagen R F, Werner K, Sørensen S A, et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water[J]. Science, 2011, 331(6016): 450-453. doi: 10.1126/science.1197397
|
[28] |
Werner K, Spielhagen R F, Bauch D, et al. Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene[J]. Paleoceanography, 2013, 28(2): 283-295. doi: 10.1002/palo.20028
|
[29] |
Werner K, Müller J, Husum K, et al. Holocene sea subsurface and surface water masses in the Fram Strait-Comparisons of temperature and sea-ice reconstructions[J]. Quaternary Science Reviews, 2016, 147: 194-209. doi: 10.1016/j.quascirev.2015.09.007
|
[30] |
Volkmann R. Planktic foraminifers in the outer Laptev Sea and the Fram Strait-modern distribution and ecology[J]. The Journal of Foraminiferal Research, 2000, 30(3): 157-176. doi: 10.2113/0300157
|
[31] |
Risebrobakken B, Dokken T, Smedsrud L H, et al. Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing[J]. Paleoceanography and Paleoclimatology, 2011, 26(4): PA4206.
|
[32] |
Hopkins T S. The GIN Sea-A synthesis of its physical oceanography and literature review 1972-1985[J]. Earth-Science Reviews, 1991, 30(3-4): 175-318. doi: 10.1016/0012-8252(91)90001-V
|
[33] |
Eldevik T, Nilsen J E Ø. The Arctic-Atlantic thermohaline circulation[J]. Journal of Climate, 2013, 26(21): 8698-8705. doi: 10.1175/JCLI-D-13-00305.1
|
[34] |
Schauer U, Fahrbach E, Osterhus S, et al. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements[J]. Journal of Geophysical Research: Oceans, 2004, 109(C6): C06026.
|
[35] |
Walczowski W, Piechura J, Osinski R, et al. The West Spitsbergen Current volume and heat transport from synoptic observations in summer[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2005, 52(8): 1374-1391. doi: 10.1016/j.dsr.2005.03.009
|
[36] |
Rabe B, Schauer U, Mackensen A, et al. Freshwater components and transports in the Fram Strait: Recent observations and changes since the late 1990s[J]. Ocean Science, 2009, 5: 219-233. doi: 10.5194/os-5-219-2009
|
[37] |
Carstens J, Hebbeln D, Wefer G. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait)[J]. Marine Micropaleontology, 1997, 29(3-4): 257-269. doi: 10.1016/S0377-8398(96)00014-X
|
[38] |
Wang X, Jian Z, Lückge A, et al. Precession-paced thermocline water temperature changes in response to upwelling conditions off southern Sumatra over the past 300000 years[J]. Quaternary Science Reviews, 2018, 192: 123-134. doi: 10.1016/j.quascirev.2018.05.035
|
[39] |
Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 803-814. doi: 10.1016/0016-7037(95)00446-7
|
[40] |
Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369-2379. doi: 10.1016/S0016-7037(99)00197-0
|
[41] |
Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785): 442-445. doi: 10.1038/35013033
|
[42] |
Mashiotta T A, Lea D W, Spero H J. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg[J]. Earth and Planetary Science Letters, 1999, 170(4): 417-432. doi: 10.1016/S0012-821X(99)00116-8
|
[43] |
Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904
|
[44] |
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
|
[45] |
Svensson A, Andersen K K, Bigler M, et al. A 60000 year Greenland stratigraphic ice core chronology[J]. Climate of the Past, 2008, 4(1): 47-57. doi: 10.5194/cp-4-47-2008
|
[46] |
Rasmussen T L, Thomsen E, Troelstra S R, et al. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60000 years[J]. Marine Micropaleontology, 2003, 47(1-2): 143-176. doi: 10.1016/S0377-8398(02)00115-9
|
[47] |
Radi T R, Vernal A V D. Last glacial maximum (LGM) primary productivity in the northern North. [J]. Canadian Journal of Earth Sciences, 2008, 45(11):1299-1316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c323806c6fbd57757d12a375502c1e3b
|
[48] |
Pflaumann U, Sarnthein M, Chapman M, et al. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000[J]. Paleoceanography, 2003, 18(3): 1065.
|
[49] |
Peltier W R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE[J]. Annu. Rev. Earth Planet. Sci., 2004, 32: 111-149. doi: 10.1146/annurev.earth.32.082503.144359
|
[50] |
Mackas D L, Greve W, Edwards M, et al. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology[J]. Progress in Oceanography, 2012, 97: 31-62. http://www.sciencedirect.com/science/article/pii/S0079661111001236
|
[51] |
Jonkers L, Brummer G J A, Peeters F J C, et al. Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic[J]. Paleoceanography and Paleoclimatology, 2010, 25(2): PA2204. http://www.researchgate.net/publication/254762276_Seasonal_stratification_shell_flux_and_oxygen_isotope_dynamics_of_left-coiling_N._pachyderma_and_T._quinqueloba_in_the_western_sub-polar_North_Atlantic
|
[52] |
Jonkers L, van Heuven S, Zahn R, et al. Seasonal patterns of shell flux, δ18O and δ13C of small and large N. pachyderma(s) and G. bulloides in the subpolar North Atlantic[J]. Paleoceanography, 2013, 28(1): 164-174. doi: 10.1002/palo.v28.1
|
[53] |
Jonkers L, Kučera M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera[J]. Biogeosciences, 2015, 12(7): 2207-2226. doi: 10.5194/bg-12-2207-2015
|
[54] |
Sarnthein M, Jansen E, Weinelt M, et al. Variations in Atlantic surface ocean paleoceanography, 50°-80°N: A time-slice record of the last 30000 years[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 1063-1094.
|
[55] |
Hillaire-Marcel C, de Vernal A. Stable isotope clue to episodic sea ice formation in the glacial North Atlantic[J]. Earth and Planetary Science Letters, 2008, 268(1-2): 143-150. doi: 10.1016/j.epsl.2008.01.012
|
[56] |
Nørgaard-Pedersen N, Spielhagen R F, Erlenkeuser H, et al. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover[J]. Paleoceanography, 2003, 18(3): 1-19.
|
[57] |
Li C, Battisti D S, Bitz C M. Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals?[J]. Journal of Climate, 2010, 23(20):5457-5475. doi: 10.1175/2010JCLI3409.1
|
[58] |
Brendryen J, Haflidason H, Rise L, et al. Ice sheet dynamics on the Lofoten-Vesterålen shelf, north Norway, from Late MIS-3 to Heinrich Stadial 1[J]. Quaternary Science Reviews, 2015, 119: 136-156. doi: 10.1016/j.quascirev.2015.03.015
|
[59] |
Goosse H, Brovkin V, Fichefet T, et al. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2[J]. Geoscientific Model Development, 2010, 3: 603-633. doi: 10.5194/gmd-3-603-2010
|
[60] |
Rainsley E, Menviel L, Fogwill C J, et al. Greenland ice mass loss during the Younger Dryas driven by Atlantic Meridional Overturning Circulation feedbacks[J]. Scientific Reports, 2018, 8(1): 11307. doi: 10.1038/s41598-018-29226-8
|
[61] |
álvarez-Solas J, Montoya M, Ritz C, et al. Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes[J]. Climate of the Past, 2011, 7(4): 1297-1306. doi: 10.5194/cp-7-1297-2011
|
[62] |
Dokken T M, Jansen E. Rapid changes in the mechanism of ocean convection during the last glacial period[J]. Nature, 1999, 401(6752): 458-461. doi: 10.1038/46753
|
[63] |
Ślubowska M A, Koç N, Rasmussen T L, et al. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80 N[J]. Paleoceanography and Paleoclimatology, 2005, 20(4): PA4014.
|
[64] |
Broecker W S, Denton G H, Edwards R L, et al. Putting the Younger Dryas cold event into context[J]. Quaternary Science Reviews, 2010, 29(9-10): 1078-1081. doi: 10.1016/j.quascirev.2010.02.019
|
[65] |
McKay N P, Kaufman D S, Routson C C, et al. The onset and rate of Holocene Neoglacial cooling in the Arctic[J]. Geophysical Research Letters, 2018, 45(22): 12487-12496. doi: 10.1029/2018GL079773
|
[66] |
Ebbesen H, Hald M, Eplet T H. Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic[J]. Quaternary Science Reviews, 2007, 26(15-16): 1999-2011. doi: 10.1016/j.quascirev.2006.07.020
|
[67] |
Hald M, Andersson C, Ebbesen H, et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene[J]. Quaternary Science Reviews, 2007, 26(25-28): 3423-3440. doi: 10.1016/j.quascirev.2007.10.005
|
[68] |
Sarnthein M, Van Kreveld S, Erlenkeuser H, et al. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N[J]. Boreas, 2003, 32(3): 447-461. doi: 10.1080/03009480310003351
|
[69] |
Gudmundsson G. Distributional limits of Pyrgo species at the biogeographic boundaries of the Arctic and the North-Atlantic Boreal regions[J]. The Journal of Foraminiferal Research, 1998, 28(3): 240-256.
|
[70] |
Zhuravleva A, Bauch H A, Spielhagen R F. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial[J]. Global and Planetary Change, 2017, 157: 232-243. doi: 10.1016/j.gloplacha.2017.09.005
|
[71] |
Risebrobakken B, Jansen E, Andersson C, et al. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas[J]. Paleoceanography, 2003, 18(1): 1017-1031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3269ef075045b201697b0aa2baf74fb
|
[72] |
Spielhagen R F, Erlenkeuser H. Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surface water layer[J]. Marine Geology, 1994, 119(3-4): 227-250. doi: 10.1016/0025-3227(94)90183-X
|
[73] |
Blaschek M, Renssen H. The Influence of Greenland melt water on the temporal and spatial response of the Holocene Thermal Maximum in the Nordic Seas: a modelling study[C]//EGU General Assembly Conference Abstracts. 2012, 14: 10679.
|
[74] |
Solomina O N, Bradley R S, Hodgson D A, et al. Holocene glacier fluctuations[J]. Quaternary Science Reviews, 2015, 111: 9-34. doi: 10.1016/j.quascirev.2014.11.018
|
[75] |
Olsen J, Anderson N J, Knudsen M F. Variability of the North Atlantic Oscillation over the past 5200 years[J]. Nature Geoscience, 2012, 5(11): 808-812. doi: 10.1038/ngeo1589
|
[76] |
Nesje A, Jansen E, Birks H J B, et al. Holocene climate variability in the northern North Atlantic region: a review of terrestrial and marine evidence[J]. Geophysical Monograph- American Geophysical Union, 2005, 158: 289-321.
|
[77] |
Jennings A E, Knudsen K L, Hald M, et al. A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf[J]. The Holocene, 2002, 12(1): 49-58. doi: 10.1191/0959683602hl519rp
|
[78] |
Porter S C. GLACIATIONS | Neoglaciation in the American Cordilleras[J]. Encyclopedia of Quaternary Science, 2007:1133-1142.
|
[79] |
Müller J, Werner K, Stein R, et al. Holocene cooling culminates in sea ice oscillations in Fram Strait[J]. Quaternary Science Reviews, 2012, 47: 1-14. doi: 10.1016/j.quascirev.2012.04.024
|
[80] |
Andersen C, Koc N, Moros M. A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms[J]. Quaternary Science Reviews, 2004, 23(20-22): 2155-2166. doi: 10.1016/j.quascirev.2004.08.004
|
[81] |
Andersson C, Pausata F S R, Jansen E, et al. Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean[J]. Climate of the Past Discussions, 2009, 5(4): 2081-2113. doi: 10.5194/cpd-5-2081-2009
|
1. |
李灿苹,鲍炳煌,常亮,张海荣,陈凤英,王睿,黄淯辉. 基于随机介质理论模拟水合物和游离气储层. 海洋地质与第四纪地质. 2025(01): 199-209 .
![]() | |
2. |
靳继凯,温欣,张艺博,赵春晖. 基于机器学习的深海能源土降压开采沉降预测. 工业技术与职业教育. 2023(06): 16-19 .
![]() | |
3. |
邓海东,隋波,张亮,程川辉,陈祖银. 方向可控金字塔方法在复杂断块油田微断层识别中的应用. 地球物理学进展. 2022(02): 817-823 .
![]() | |
4. |
尉佳,冯京,杨睿,孙军,王威. 海洋地震垂直缆在自由状态下的照明情况. 海洋地质前沿. 2022(05): 33-40 .
![]() | |
5. |
李鹏举,田甜,魏双宝. 天然气水合物饱和度碳氧比测井的解释模型. 黑龙江科技大学学报. 2021(03): 289-294 .
![]() |