SUN Zhixue, ZHU Xuchen, LIU Lei, HE Chuqiao, DU Jinwen. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2018120402
Citation: SUN Zhixue, ZHU Xuchen, LIU Lei, HE Chuqiao, DU Jinwen. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2018120402

Feasibility study on joint exploitation of methane hydrate with deep geothermal energy

More Information
  • Received Date: December 03, 2018
  • Revised Date: January 08, 2019
  • With the drastic increase in energy consumption, both the natural gas hydrates and geothermal resources have become research focuses in the world due to their enormous reserves. Then the method to exploit shallow gas hydrates together with deep geothermal resources becomes attractive. In this method, seawater will be injected into the deep geothermal reservoirs and then bring into the shallow hydrate reservoirs after circulation and absorbing enough heat from the deep geothermal reservoir. Depressurization and thermal recovery technique are used to encourage the decomposition of gas hydrates. In this paper, the feasibility of the joint exploitation method is evaluated through numerical simulation, and the thermal properties of hydrate bearing sediment, exploiting parameters and reservoir sensitivities studied. Results show that effective utilization of geothermal resources to heat seawater may enable the temperature of seawater entering the hydrate layer to maintain on a level of about 50℃, and higher gas production will achieved comparing to the method of heat injection and depressurization techniques. It is indeed a method with good feasibility. Some factors, such as injecting rate, bottom hole pressure, thermal conductive factor of formation and geothermal gradient, have a significant impact on the exploiting results. In addition, the injection rate and bottom hole pressure may bring greatly influence to gas production in the early stage, while the thermal conductivity of larger formation has a favorable contribution to the heat exchange between the seawater and formation. Results also suggest that the performance of heat transferring of the method be largely attenuated and the cumulative gas production of methane be substantially reduced within the area with a geothermal gradient lower than 0.025m/℃. In such a circumstance, the commercial value of the deposits and their feasibility of exploitation will decrease.
  • [1]
    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470.
    [2]
    Konno Y, Masuda Y, Akamine K, et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion & Management, 2016, 108:439-445. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1294ffa686fe21ff5d8962c0a33e6d5
    [3]
    Falser S, Uchida S, Palmer A C, et al. Increased gas production from hydrates by combining depressurization with heating of the wellbore[J]. Energy Fuels, 2012, 26(10):6259-6267. doi: 10.1021/ef3010652
    [4]
    Islam M R. A new recovery technique for gas production from Alaskan gas hydrates[J]. Journal of Petroleum Science & Engineering, 1991, 11(4):267-281.
    [5]
    唐良广, 李刚, 冯自平, 等.热力法开采天然气水合物的数学模拟[J].天然气工业, 2006, 26(10):105-107. doi: 10.3321/j.issn:1000-0976.2006.10.033

    TANG Liangguang, LI Gang, FENG Ziping, et al. Mathematic modeling on thermal recovery of natural gas hydrate[J]. Natureal Gas lndustry, 2006, 26(10):105-107. doi: 10.3321/j.issn:1000-0976.2006.10.033
    [6]
    Fitzgerald G C, Castaldi M J, Schicks J M. Methane hydrate formation and thermal based dissociation behavior in silica glass bead porous media[J]. Industrial & Engineering Chemistry Research, 2014, 53(16):6840-6854. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57fea6a51ecb6751922735da7f6627b4
    [7]
    Wang Y, Feng J C, Li X S, et al. Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization[J]. Applied Energy, 2016, 181:299-309. doi: 10.1016/j.apenergy.2016.08.023
    [8]
    Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs[J]. International Journal of Heat & Mass Transfer, 2018, 118:1115-1127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2a68854081ac571a8bb81c7ffc68998
    [9]
    Wang Y, Feng J C, Li X S, et al. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods[J]. Energy, 2015, 90:1931-1948. doi: 10.1016/j.energy.2015.07.029
    [10]
    Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates -phase equilibria for CO2-CH4 mixed hydrate system[J]. Journal of Chemical Engineering of Japan, 1996, 29(3):478-483. doi: 10.1252/jcej.29.478
    [11]
    Yezdimer E M, Cummings P T, Chialvo A A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation[J]. Journal of Physical Chemistry, 2002, 106(34):7982-7987. doi: 10.1021/jp020795r
    [12]
    Uddin M, Coombe D A, Law H S, et al. Numerical studies of gas hydrate formation and decomposition in a geological reservoir[J]. Journal of Energy Resources Technology, 2008, 130(3):032501-1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bc22ce759981cba290b6b6f63eeae88
    [13]
    Uddin M, Coombe D, Wright F. Modeling of CO2-hydrate formation in geological reservoirs by injection of CO2 gas[J]. Journal of Energy Resources Technology Transactions of the Asme, 2008, 130(3):102-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56c4d61bb0450e5712a9170354987ab5
    [14]
    Bertani R. Geothermal power generation in the world 2010-2014 update report[J]. Geothermics, 2016, 60(1):31-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=008286d0fc7e28ebead100b697d2be77
    [15]
    Liu C, Meng Q, He X, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine & Petroleum Geology, 2015, 61(61):14-21.
    [16]
    李彦龙.我国海域天然气水合物试开采圆满完成并取得历史性突破[J].海洋地质与第四纪地质, 2017, 37(5):34. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f0c459a-7f39-4e5f-9697-dcf201702507

    LI Yanlong. Successful completion and historic breakthrough of natural gas hydrate trial production in China′s offshore areas[J]. Marine Geology & Quaternary Geology, 2017, 37(5):34. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f0c459a-7f39-4e5f-9697-dcf201702507
    [17]
    Li Y, Jiang Z, Jiang S, et al. Heat flow and thermal evolution of a passive continental margin from shelf to slope-A case study on the Pearl River Mouth Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2017.
    [18]
    宁伏龙, 蒋国盛, 汤凤林, 等.利用地热开采海底天然气水合物[J].天然气工业, 2006, 26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038

    NING Fulong, JIANG Guosheng, TANG Fenglin, et al.Utilizing geothermal energy to exploit marine gas hydrate[J]. Natureal Gas lndustry, 2006, 26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038
    [19]
    窦斌, 秦明举, 蒋国盛, 等.利用地热开采南海天然气水合物的技术研究[J].海洋地质前沿, 2011(10):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201110007

    DOU Bin, QIN Mingju, JIANG Guosheng, et al. A discussion on technology for gas hydrates production in the South China Sea using geothermal as an energy source[J].Marine Geology Frontiers, 2011(10):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201110007
    [20]
    Liu Y, Hou J, Zhao H, et al. A method to recover natural gas hydrates with geothermal energy conveyed by CO2[J]. Energy, 2018, 144:265-278. doi: 10.1016/j.energy.2017.12.030
    [21]
    冯景春, 李小森, 王屹, 等.三维实验模拟双水平井联合法开采天然气水合物[J].现代地质, 2016, 30(4):929-936. doi: 10.3969/j.issn.1000-8527.2016.04.023

    FENG Jingchun, LI Xiaosen, WANG Yi, et al.Three-dimension experimental investigation of hydrate dissociation by the combined method with dual horizontal wells[J]. Geoscience, 2016, 30(4):929-936. doi: 10.3969/j.issn.1000-8527.2016.04.023
    [22]
    李淑霞, 王炜, 陈月明, 等.多孔介质中天然气水合物注热开采影响因素实验研究[J].海洋地质前沿, 2011, 27(6):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201106008

    LI Shuxia, WANG Wei, CHEN Yueming, et al. Experimental study on influence factors of hot-brine stimulation for dissociation of ngh in porous medium[J].Marine Geology Frontiers, 2011, 27(6):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201106008
    [23]
    Dornan P, Alavi S, Woo T K. Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates[J]. Journal of Chemical Physics, 2007, 127(12):52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4e9f3915f857fc6a5a8cf372591a699
    [24]
    Vysniauskas A, Bishnoi P R. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(7):1061-1072. doi: 10.1016/0009-2509(83)80027-X
    [25]
    Anderson G K. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation[J]. Journal of Chemical Thermodynamics, 2004, 36(12):1119-1127. doi: 10.1016/j.jct.2004.07.005
    [26]
    张伟, 梁金强, 何家雄, 等.南海北部神狐海域GMGS1和GMGS3钻探区天然气水合物运聚成藏的差异性[J].天然气工业, 2018, 38(3):138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803018

    ZHANG Wei, LIANG Jinqiang, HE Jiaxiong, et al. Differences in natural gas hydrate migration and accumulation between GMGS1 and GMGS3 drilling areas in the Shenhu area, northern South China Sea[J]. Natural Gas Industry, 2018, 38(3):138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803018
    [27]
    万义钊, 吴能友, 胡高伟, 等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015
  • Related Articles

    [1]WU Xiaoting, LI Yuguo, DUAN Shuangmin. The feasibility of marine CSEM method for detecting offshore freshened groundwater reservoirs[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 204-215. DOI: 10.16562/j.cnki.0256-1492.2023071902
    [2]MAO Peixiao, WU Nengyou, WAN Yizhao, CHEN Qiang, HU Gaowei. Effects of perforation degree and deployment position of multilateral horizontal wells on gas production from inclined clay hydrate reservoirs[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 207-217. DOI: 10.16562/j.cnki.0256-1492.2022011501
    [3]PENG Yingyu, SU Zheng, LIU Lihua, JIN Guangrong, WEI Xueqin. Numerical study on the movement of the decomposition front of natural gas hydrate under depressurization[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 198-207. DOI: 10.16562/j.cnki.0256-1492.2020072701
    [4]WU Shuyu, XU Huaning, LIU Jun, YANG Rui, NING Fulong. Frequency-divided inversion method of heterogenous natural gas hydrates reservoir in the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 106-120. DOI: 10.16562/j.cnki.0256-1492.2020031901
    [5]DONG Yifei, LUO Wenzao, LIANG Qianyong, QIU Huanglin, REN Chong, YAN Ru, LIN Jinqing. A NEWLY DEVELOPED BOTTOM-SUPPORTED SUBMERSIBLE BUOYANT SYSTEM AND ITS TESTING APPLICATION TO A NATURAL GAS HYDRATE AREA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195-203. DOI: 10.16562/j.cnki.0256-1492.2017.05.020
    [6]LIU Lele, ZHANG Hongyuan, LIU Changling, LI Yanlong, LI Chengfeng. PRESSURE PULSE-DECAY METHOD AND ITS APPLICATION TO PERMEABILITY MEASUREMENT OF HYDRATE-BEARING SEDIMENTS[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 159-165. DOI: 10.16562/j.cnki.0256-1492.2017.05.016
    [7]WANG Lifeng, SHANG Jiujing, LIANG Jinqiang, XU Xing, SHA Zhibin, LU Jing, WANG Jingli. DISTRIBUTION PATTERN OF SEAFLOOR THERMAL CONDUCTIVITIES AT THE DRILLING AREA FOR GAS HYDRATE ON THE NORTHEASTERN SLOPE OF SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 29-37. DOI: 10.16562/j.cnki.0256-1492.2016.02.004
    [8]CAI Ji, LI Yuguo. FEASIBILITY TO DETECT GAS HYDRATE BY USING TIME DOMAIN MARINE CSEM METHOD[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 159-163. DOI: 10.3724/SP.J.1140.2016.01016
    [9]ZHENG Tongming, ZHAO Jiaju, AN Chengbang, TAO Shichen, LÜ Yanbin, WANG Zongli. STUDY OF POLLEN CONCENTRATES FOR AMS 14C DATING IN BARKOL LAKE[J]. Marine Geology & Quaternary Geology, 2010, 30(1): 83-86. DOI: 10.3724/SP.J.1140.2010.01083
    [10]ZENG Fan-cai, WU Lin, ZHANG Guang-xue, LIANG Jin-qiang, WANG Hong-bin. THE APPLICATION OF MONTE CARLO(MC)METHOD TO THE ESTIMATION OF GAS HYDRATE RESOURCES[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 139-144.

Catalog

    Article views (2843) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return