SUN Zhixue, ZHU Xuchen, LIU Lei, HE Chuqiao, DU Jinwen. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2018120402
Citation: SUN Zhixue, ZHU Xuchen, LIU Lei, HE Chuqiao, DU Jinwen. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2018120402

Feasibility study on joint exploitation of methane hydrate with deep geothermal energy

More Information
  • Received Date: December 03, 2018
  • Revised Date: January 08, 2019
  • With the drastic increase in energy consumption, both the natural gas hydrates and geothermal resources have become research focuses in the world due to their enormous reserves. Then the method to exploit shallow gas hydrates together with deep geothermal resources becomes attractive. In this method, seawater will be injected into the deep geothermal reservoirs and then bring into the shallow hydrate reservoirs after circulation and absorbing enough heat from the deep geothermal reservoir. Depressurization and thermal recovery technique are used to encourage the decomposition of gas hydrates. In this paper, the feasibility of the joint exploitation method is evaluated through numerical simulation, and the thermal properties of hydrate bearing sediment, exploiting parameters and reservoir sensitivities studied. Results show that effective utilization of geothermal resources to heat seawater may enable the temperature of seawater entering the hydrate layer to maintain on a level of about 50℃, and higher gas production will achieved comparing to the method of heat injection and depressurization techniques. It is indeed a method with good feasibility. Some factors, such as injecting rate, bottom hole pressure, thermal conductive factor of formation and geothermal gradient, have a significant impact on the exploiting results. In addition, the injection rate and bottom hole pressure may bring greatly influence to gas production in the early stage, while the thermal conductivity of larger formation has a favorable contribution to the heat exchange between the seawater and formation. Results also suggest that the performance of heat transferring of the method be largely attenuated and the cumulative gas production of methane be substantially reduced within the area with a geothermal gradient lower than 0.025m/℃. In such a circumstance, the commercial value of the deposits and their feasibility of exploitation will decrease.
  • [1]
    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470.
    [2]
    Konno Y, Masuda Y, Akamine K, et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion & Management, 2016, 108:439-445. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1294ffa686fe21ff5d8962c0a33e6d5
    [3]
    Falser S, Uchida S, Palmer A C, et al. Increased gas production from hydrates by combining depressurization with heating of the wellbore[J]. Energy Fuels, 2012, 26(10):6259-6267. doi: 10.1021/ef3010652
    [4]
    Islam M R. A new recovery technique for gas production from Alaskan gas hydrates[J]. Journal of Petroleum Science & Engineering, 1991, 11(4):267-281.
    [5]
    唐良广, 李刚, 冯自平, 等.热力法开采天然气水合物的数学模拟[J].天然气工业, 2006, 26(10):105-107. doi: 10.3321/j.issn:1000-0976.2006.10.033

    TANG Liangguang, LI Gang, FENG Ziping, et al. Mathematic modeling on thermal recovery of natural gas hydrate[J]. Natureal Gas lndustry, 2006, 26(10):105-107. doi: 10.3321/j.issn:1000-0976.2006.10.033
    [6]
    Fitzgerald G C, Castaldi M J, Schicks J M. Methane hydrate formation and thermal based dissociation behavior in silica glass bead porous media[J]. Industrial & Engineering Chemistry Research, 2014, 53(16):6840-6854. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57fea6a51ecb6751922735da7f6627b4
    [7]
    Wang Y, Feng J C, Li X S, et al. Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization[J]. Applied Energy, 2016, 181:299-309. doi: 10.1016/j.apenergy.2016.08.023
    [8]
    Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs[J]. International Journal of Heat & Mass Transfer, 2018, 118:1115-1127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2a68854081ac571a8bb81c7ffc68998
    [9]
    Wang Y, Feng J C, Li X S, et al. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods[J]. Energy, 2015, 90:1931-1948. doi: 10.1016/j.energy.2015.07.029
    [10]
    Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates -phase equilibria for CO2-CH4 mixed hydrate system[J]. Journal of Chemical Engineering of Japan, 1996, 29(3):478-483. doi: 10.1252/jcej.29.478
    [11]
    Yezdimer E M, Cummings P T, Chialvo A A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation[J]. Journal of Physical Chemistry, 2002, 106(34):7982-7987. doi: 10.1021/jp020795r
    [12]
    Uddin M, Coombe D A, Law H S, et al. Numerical studies of gas hydrate formation and decomposition in a geological reservoir[J]. Journal of Energy Resources Technology, 2008, 130(3):032501-1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bc22ce759981cba290b6b6f63eeae88
    [13]
    Uddin M, Coombe D, Wright F. Modeling of CO2-hydrate formation in geological reservoirs by injection of CO2 gas[J]. Journal of Energy Resources Technology Transactions of the Asme, 2008, 130(3):102-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56c4d61bb0450e5712a9170354987ab5
    [14]
    Bertani R. Geothermal power generation in the world 2010-2014 update report[J]. Geothermics, 2016, 60(1):31-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=008286d0fc7e28ebead100b697d2be77
    [15]
    Liu C, Meng Q, He X, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine & Petroleum Geology, 2015, 61(61):14-21.
    [16]
    李彦龙.我国海域天然气水合物试开采圆满完成并取得历史性突破[J].海洋地质与第四纪地质, 2017, 37(5):34. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f0c459a-7f39-4e5f-9697-dcf201702507

    LI Yanlong. Successful completion and historic breakthrough of natural gas hydrate trial production in China′s offshore areas[J]. Marine Geology & Quaternary Geology, 2017, 37(5):34. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f0c459a-7f39-4e5f-9697-dcf201702507
    [17]
    Li Y, Jiang Z, Jiang S, et al. Heat flow and thermal evolution of a passive continental margin from shelf to slope-A case study on the Pearl River Mouth Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2017.
    [18]
    宁伏龙, 蒋国盛, 汤凤林, 等.利用地热开采海底天然气水合物[J].天然气工业, 2006, 26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038

    NING Fulong, JIANG Guosheng, TANG Fenglin, et al.Utilizing geothermal energy to exploit marine gas hydrate[J]. Natureal Gas lndustry, 2006, 26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038
    [19]
    窦斌, 秦明举, 蒋国盛, 等.利用地热开采南海天然气水合物的技术研究[J].海洋地质前沿, 2011(10):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201110007

    DOU Bin, QIN Mingju, JIANG Guosheng, et al. A discussion on technology for gas hydrates production in the South China Sea using geothermal as an energy source[J].Marine Geology Frontiers, 2011(10):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201110007
    [20]
    Liu Y, Hou J, Zhao H, et al. A method to recover natural gas hydrates with geothermal energy conveyed by CO2[J]. Energy, 2018, 144:265-278. doi: 10.1016/j.energy.2017.12.030
    [21]
    冯景春, 李小森, 王屹, 等.三维实验模拟双水平井联合法开采天然气水合物[J].现代地质, 2016, 30(4):929-936. doi: 10.3969/j.issn.1000-8527.2016.04.023

    FENG Jingchun, LI Xiaosen, WANG Yi, et al.Three-dimension experimental investigation of hydrate dissociation by the combined method with dual horizontal wells[J]. Geoscience, 2016, 30(4):929-936. doi: 10.3969/j.issn.1000-8527.2016.04.023
    [22]
    李淑霞, 王炜, 陈月明, 等.多孔介质中天然气水合物注热开采影响因素实验研究[J].海洋地质前沿, 2011, 27(6):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201106008

    LI Shuxia, WANG Wei, CHEN Yueming, et al. Experimental study on influence factors of hot-brine stimulation for dissociation of ngh in porous medium[J].Marine Geology Frontiers, 2011, 27(6):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201106008
    [23]
    Dornan P, Alavi S, Woo T K. Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates[J]. Journal of Chemical Physics, 2007, 127(12):52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4e9f3915f857fc6a5a8cf372591a699
    [24]
    Vysniauskas A, Bishnoi P R. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(7):1061-1072. doi: 10.1016/0009-2509(83)80027-X
    [25]
    Anderson G K. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation[J]. Journal of Chemical Thermodynamics, 2004, 36(12):1119-1127. doi: 10.1016/j.jct.2004.07.005
    [26]
    张伟, 梁金强, 何家雄, 等.南海北部神狐海域GMGS1和GMGS3钻探区天然气水合物运聚成藏的差异性[J].天然气工业, 2018, 38(3):138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803018

    ZHANG Wei, LIANG Jinqiang, HE Jiaxiong, et al. Differences in natural gas hydrate migration and accumulation between GMGS1 and GMGS3 drilling areas in the Shenhu area, northern South China Sea[J]. Natural Gas Industry, 2018, 38(3):138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803018
    [27]
    万义钊, 吴能友, 胡高伟, 等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015
  • Cited by

    Periodical cited type(11)

    1. 田振环,王厚杰,王威,史经昊. 海上地热能开发现状及其对中国的启示. 海洋地质前沿. 2024(06): 1-12 .
    2. 王胜坡. 海洋可燃冰资源开发新技术现状及展望. 化学工程师. 2024(09): 71-75 .
    3. 陈野,赵笑寒,姜志晨,王佳惠,江鑫,卞琦,刘松. 基于SWOT的中国南海可燃冰资源商业开采前景浅析. 天然气与石油. 2024(06): 35-41 .
    4. 欧芬兰,于彦江,寇贝贝,陈靓. 水合物藏的类型、特点及开发方法探讨. 海洋地质与第四纪地质. 2022(01): 194-213 . 本站查看
    5. 刘乐乐,万义钊,李承峰,张永超,刘昌岭,吴能友. 天然气水合物储层有效绝对渗透率现场测试进展. 海洋地质前沿. 2022(11): 40-55 .
    6. 王维希,张春生,吴颜雄,张审琴,夏晓敏. 联合深海地热开采天然气水合物技术展望. 现代化工. 2021(09): 17-21 .
    7. 冯轩,翟亚若,王久星,韩金虎,陈映赫,马麟. 置换法联合压裂开采天然气水合物技术. 现代化工. 2021(12): 22-26 .
    8. 吴能友,李彦龙,万义钊,孙建业,黄丽,毛佩筱. 海域天然气水合物开采增产理论与技术体系展望. 天然气工业. 2020(08): 100-115 .
    9. 卜庆涛,刘圣彪,胡高伟,刘昌岭,万义钊. 含水合物沉积物声学特性——实验模拟与数值模拟的对比分析. 海洋地质前沿. 2020(09): 56-67 .
    10. 陈强,胡高伟,李彦龙,万义钊,刘昌岭,吴能友,刘洋. 海域天然气水合物资源开采新技术展望. 海洋地质前沿. 2020(09): 44-55 .
    11. 韩笑,刘姝,万青翠,陈玲玲,张郑挥,李波. 热激法开采天然气水合物研究进展. 油气储运. 2019(08): 849-855 .

    Other cited types(10)

Catalog

    Article views (2842) PDF downloads (31) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return