YU Yi, LUAN Xiwu, LIU Hong, GUO Longxiang, MI Congyong, SHI Yanfeng, LIU Jiacheng, ZHANG Hao. Research on acoustic detection parameters for bubble plume in cold seeps[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 188-199. DOI: 10.16562/j.cnki.0256-1492.2018042401
Citation: YU Yi, LUAN Xiwu, LIU Hong, GUO Longxiang, MI Congyong, SHI Yanfeng, LIU Jiacheng, ZHANG Hao. Research on acoustic detection parameters for bubble plume in cold seeps[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 188-199. DOI: 10.16562/j.cnki.0256-1492.2018042401

Research on acoustic detection parameters for bubble plume in cold seeps

More Information
  • Received Date: April 23, 2018
  • Revised Date: June 02, 2018
  • Acoustic detection is an important method for investigation of cold seep bubble plumes. On the basis of acoustic theory, this paper studies the influence of three detection parameters on the bubble plume acoustic detection and imaging, i.e. the emission frequency, the transmitting power, and the width of the pulse (pulse duration) of the CW sonic pulse signal. The principles and ranges for selection of the acoustic detection parameters are further clarified with the data from field investigation and simulation experiment of cold seep at the Laotieshan water channel at the border between the Yellow Sea and the Bohai Sea. In order to reduce the abnormal interference bands in the acoustic water section, the authors proposed a method to eliminate the interference band in the acoustic profile by changing the time delay of pulse emission. It is proved that the method is effective to further optimize the acoustic detection and imaging for the detection of bubble plume of cold seep.
  • [1]
    席世川, 张鑫, 王冰.海底冷泉标志与主要冷泉区的分布和比较[J].海洋地质前沿, 2017, 33(2):7-18. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201702002

    XI Shichuan, ZHANG Xin, WANG Bind, et al. The indicators of seabed cold seep and comparison among main distribution areas[J]. Marine Geology Frontiers, 2017, 33(2):7-18. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201702002
    [2]
    陈多福, 陈先沛, 陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报, 2002, 20(1):34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007

    CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geological and geochemical characteristics of Cold Seepage sedimentary carbonate rocks [J]. Journal of Sedimentation, 2002, 20(1):34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
    [3]
    栾锡武.海底冷泉的成因机制[C].中国地球物理学会第二十四届年会论文集, 2008.

    LUAN Xiwu. The genetic mechanism of the seabed cold seep[C]. The twenty -fourth annual meeting of the Chinese Geophysical Society, 2008.
    [4]
    Kowsmann R O, Carvalho M D. Erosional event causing gas-venting on the upper continental slope[J]. Campos Basin, Brazil, 2002. doi: 10.1016-S0278-4343(02)00060-2/
    [5]
    栾锡武, 秦蕴珊.冲绳海槽宫古段西部槽底海底气泉的发现[J].科学通报, 2005, 50(8):802-810. doi: 10.3321/j.issn:0023-074X.2005.08.014

    LUAN Xiwu, Qin Yunshan. Discovery of submarine gas springs in Western trough of Miyako Island section of Okinawa trough[J]. Chinese Science Bulletin, 2005, 50(8):802-810. doi: 10.3321/j.issn:0023-074X.2005.08.014
    [6]
    栾锡武, 刘鸿, 岳保静.海底冷泉在旁扫声纳图像上的识别[J].现代地质, 2010, 24(3):474-480. doi: 10.3969/j.issn.1000-8527.2010.03.009

    LUAN Xiwu, LIU Hong, YUE BaoJing. Recognition of a cold seep on a side scan sonar image[J]. Geoscience, 2010, 24(3):474-480. doi: 10.3969/j.issn.1000-8527.2010.03.009
    [7]
    刘伯然.利用地震海洋学方法探测海底冷泉[C].中国地球物理学会, 2012.

    LIU Boran. Detecting submarine spring with multi-channel seismic data[C]. Chinese Geophysics Society of Chinese Geophysics, 2012.
    [8]
    樊栓狮, 刘锋, 陈多福.海洋天然气水合物的形成机理探讨[J].天然气地球科学, 2004, 15(5):524-530, 2315. doi: 10.3969/j.issn.1672-1926.2004.05.017

    FAN Shuanshi, LIU Feng, CHEN Duofu. Discussion on the formation mechanism of marine gas hydrate[J]. Natural Gas Geoscience, 2004, 15(5):524-530, 2315. doi: 10.3969/j.issn.1672-1926.2004.05.017
    [9]
    栾锡武, 赵克斌, A Obzhirov, 等.鄂霍次克海浅表层天然气水合物的勘查识别和基本特征[J].中国科学D辑:地球科学, 2008, 1:99-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200801011

    LUAN Xiwu, ZHAO Kebin, A Obzhirov, et al. Exploration identification and basic characteristics of shallow surface gas hydrates in Okhotsk sea[J]. Science in China(Series D). 2008, 1:99-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200801011
    [10]
    Garcia Gil S, Vilas F, Garcia Garcia A. Shallow gas features in incised-valley fills (RIa de Vigo, NW Spain): a case study[J]. Continental Shelf Research, 2002, 22(16):2303. doi: 10.1016/S0278-4343(02)00057-2
    [11]
    李智敏, 苟先太, 金炜东, 等.微地震信号的频率特征[J].岩土工程学报, 2008, 30(6):830-834. doi: 10.3321/j.issn:1000-4548.2008.06.009

    LI Zhimin, GOU Xiantai, JIN Weidong, et al. Frequency characteristics of micro-seismic signals[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6):830-834. doi: 10.3321/j.issn:1000-4548.2008.06.009
    [12]
    陈江欣, 宋海斌, 关永贤, 等.海底冷泉的地震海洋学初探[J].地球物理学报, 2017, 60(2):604-616.

    CHEN Jiangxin, SONG Haibin, GUAN Yongxian, et al.Preliminary study on the earthquake Oceanography of the submarine cold seep[J]. Chinese Journal of Geophysics, 2017, 60(2):604-616.
    [13]
    Urick R J. Principle of underwater sound for engineers[J]. MacGraw-Hill, New York P, 1967, 384.
    [14]
    Derek C Quigley, J Scott Hornafius, Bruce P Luyendyk, et al. Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production[J]. Geology, 1999, 27(11):1047-1050. doi: 10.1130/0091-7613(1999)027<1047:DINMHS>2.3.CO;2
    [15]
    Somoza L, Díaz-del-Ríob V, León R. Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area:Acoustic imagery, multibeam and ultra-high resolution seismic data[J]. Marine Geology, 2003, 195:153-176. doi: 10.1016/S0025-3227(02)00686-2
    [16]
    Nicolas Pinet, Mathieu Duchesne, Denis Lavoie, et al. Surface and subsurface signatures of gas seepage in the St. Lawrence Estuary(Canada):Significance to hydrocarbon exploration[J]. Marine and Petroleum Geology, 2008, 25:271-288. doi: 10.1016/j.marpetgeo.2007.07.011
    [17]
    Helge Leth, Marita Gading, Lars Wensaas. Hydrocarbon leakage interpreted on seismic data[J]. Marine and Petroleum Geology, 2009, 26:1304-1319. doi: 10.1016/j.marpetgeo.2008.09.008
    [18]
    Heiko Sahling, Gerhard Bohrmann, Volkhard Spiess, et al. Pockmarks in the Northern Congo Fan area, SW Africa:Complex seafloor features shaped by fluid flow[J]. Marine Geology, 2008, 249:206-225. doi: 10.1016/j.margeo.2007.11.010
    [19]
    Kruglyakova R P, Byakov Y A, Kruglyakova M V, et al. Natural oil and gas seeps on the Black Sea floor[J]. Geo-Mar Lett, 2004, 24:150-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc71083d06f74a73174fc901527d9040
    [20]
    Dupre S, Buffet G, Mascle J, et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys[J]. Mar. Geophys. Res, 2008, 29:275-290. doi: 10.1007/s11001-009-9063-3
    [21]
    Van Rensbergen P, Rabaute A, Colpaert A. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. Int. J. Earth Sci. (Geo Rundsch), 2007, 96:185-197. doi: 10.1007/s00531-005-0021-2
    [22]
    Huvenne V A I, Bailey W R, Shannon P M, et al. The Magellan mound province in the Porcupine Basin[J]. Int. J. Earth Sci. (Geol Rundsch), 2007, 96:85-101. doi: 10.1007/s00531-005-0494-z
    [23]
    Hovland M. Discovery of prolific natural methane seeps at Gullfaks, northern North Sea[J]. Geo-Mar Lett, 2007, 27:197-201. doi: 10.1007/s00367-007-0070-6
    [24]
    Jeong K S, Cho J H, Kim S R, et al. Geophysical and geochemical observations on actively seeping hydrocarbon gases on the south-eastern Yellow Sea continental shelf[J]. Geo- Mar Lett, 2004, 24:53-62. doi: 10.1007/s00367-003-0164-8
    [25]
    赵铁虎, 张训华, 冯京.海底油气渗漏浅表层声学探测技术[J].海洋地质与第四纪地质, 2010, 30(6):149-156. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=b8d3f18a-d0c5-4f52-8319-48adbe4fafa9

    ZHAO Tiehu, ZHANG Xunhua, FENG Jing. Acoustic detection techniques for seabed hydrocarbon seepage[J]. Marine Geology & Quaternary Geology, 2010, 30(6):149-156. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=b8d3f18a-d0c5-4f52-8319-48adbe4fafa9
    [26]
    顾兆峰, 刘怀山, 张志珣.浅层气逸出到海水中的气泡声学探测方法[J].海洋地质与第四纪地质, 2008, 28(2):129-135. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=35a33467-c001-482c-b844-fecd498a1999

    GU Zhaofeng, LIU Huaishan, ZHANG Zhixun. Acoustic detecting method for bubbles from shallow gas to sea water[J]. Marine Geology & Quaternary Geology, 2008, 28(2):129-135. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=35a33467-c001-482c-b844-fecd498a1999
    [27]
    宋春云, 雷亚辉, 丁士圻.混响背景下的CW信号检测[J].信号处理, 2008, 24(6):992-994. doi: 10.3969/j.issn.1003-0530.2008.06.021

    SONG Chunyun, LEI Yahui, DING Shiyang. CW signal detection under reverberation background[J]. Signal Processing, 2008, 24(6):992-994. doi: 10.3969/j.issn.1003-0530.2008.06.021
    [28]
    刘伯胜, 雷家煜.水声学原理[M].哈尔滨工程大学出版社, 2010.

    LIU Bosheng, LEI Jiayu. Theory of Underwater Acoustics[M]. Harbin Engineering University press, 2010.
    [29]
    田坦, 刘国枝, 孙大军.声呐技术[M].哈尔滨工程大学出版社, 2000:14-16.

    TIAN Tan, LIU Guozhi, SUN Dajun. Sonar Technology[M]. Harbin Engineering University press, 2000:14-16.
    [30]
    Spitzer L Jr. Acoustic properties of gas bubble in a liquid[R]. New York: Columbia University, 1943.
    [31]
    Minnaert M. XVI. On musical air-bubbles and the sounds of running water[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 16(104):235-248. doi: 10.1080/14786443309462277
    [32]
    Smith F D. XCVIII. On the destructive mechanical effects of the gas-bubbles liberated by the passage of intense sound through a liquid[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1935, 19(130):1147-1151. doi: 10.1080/14786443508561454
    [33]
    Briggs H B, Johnson J B, Mason W P. Properties of liquids at high sound pressure[J]. The Journal of the Acoustical Society of America, 1947, 19(4): 664-677. doi: 10.1121/1.1916536
    [34]
    Houghton G. Theory of bubble pulsation and cavitation[J]. The Journal of the Acoustical Society of America, 1963, 35(9):1387-1393. doi: 10.1121/1.1918702
    [35]
    Shima A. The natural frequency of a bubble oscillating in a viscous compressible liquid[J]. Journal of Basic Engineering, 1970, 92(3):555-561. doi: 10.1115/1.3425065
    [36]
    林芳.海洋热液声学探测的方法研究[D].哈尔滨工程大学, 2010.

    LIN Fang. Methods of ocean hydrothermal acoustic detection[D]. Harbin Engineering University, 2010.
    [37]
    Artemov Y G, Egorov V N, Polikarpov G G, et al. Methane emission to the hydro-and atmosphere by gas bubble streams in the Dnieper paleo-delta, the Black Sea[J]. Rep. Natl. Acad. Sci. Ukraine, 2007, 5: 110-116.
    [38]
    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea:Hydroacoustic characteristics and temporal variability[J]. Earth & Planetary Science Letters, 2006, 244(1-2):1-15.
    [39]
    尤立克R J.水声原理[M].哈尔滨船舶工程学院出版社, 1990:199-203.

    Yutsk R J. Principles of Underwater Acoustic Engineering[M]. Harbin Institute of Ship Engineering, 1990:199-203.
  • Related Articles

    [1]WANG Wei, TANG Shikai, HU Yanping, WANG Hongyan, SHI Hongyuan, ZHAN Chao. Spatio-temporal variation and influencing factors of seafloor sediment grain size off the mouth of Dingzi Bay of Southern Shandong Peninsula[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 70-80. DOI: 10.16562/j.cnki.0256-1492.2021050601
    [2]FEI Chengpeng, HU Rijun, LUO Minyi, JIANG Shenghui, ZHANG Xiaodong, ZHU Longhai, LIU Bo. Hydrodynamic characteristics of Longkou Bay and its response to artificial island groups[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 81-95. DOI: 10.16562/j.cnki.0256-1492.2021021301
    [3]GUO Yuxuan, QIAO Shuqing, SHI Xuefa, WU Bin, YUAN Long, REN Yijun, GAO Jingjing, ZHU Aimei, . Variation trend and contamination source of heavy metals in sediments from estuary area of Bangkok Bay in the past century[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 61-69. DOI: 10.16562/j.cnki.0256-1492.2018031901
    [4]BI Shipu, KONG Xianghuai, ZHANG Yong, ZHANG Xiaobo, MA Xiaohong. GEOCHEMICAL CHARACTERISTICS OF REES OF SHALLOW SEDIMENTS IN THE MUD AREA OF SOUTHERN DINGZI BAY AND THEIR PROVENANCE IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 153-162. DOI: 10.16562/j.cnki.0256-1492.2016.06.018
    [5]CHEN Xiaoying, LIU Jinqing, GUO Lei, LIU Xiaolei, YIN Ping. SHORT TERM DEPOSITIONAL DYNAMIC PROCESSES AT DAGU RIVER MOUTH OF JIAOZHOU BAY[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 45-50. DOI: 10.16562/j.cnki.0256-1492.2016.06.006
    [6]ZHAO Jingtao, HU Bangqi, LI Jun, BAI Fenglong, XU Donghao, LI Guogang, ZHANG Xianrong. VARIATION IN GRAIN-SIZE DISTRIBUTION PATTERN OF THE SOUTHEASTERN LIAODONG BAY AND ITS IMPACT FACTORS[J]. Marine Geology & Quaternary Geology, 2013, 33(6): 19-27. DOI: 10.3724/SP.J.1140.2013.06019
    [7]DOU Yanguang, LIU Jingpeng, LI Jun, ZHAO Jingtao. GRAIN SIZE CHARACTERISTICS OF THE CORE SEDIMENTS IN THE EASTERN LIAODONG BAY AND IMPLICATIONS FOR DEPOSITIONAL ENVIRONMENT[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 27-34. DOI: 10.3724/SP.J.1140.2013.05027
    [8]XU Donghao, LI Jun, ZHAO Jingtao, HU Bangqi, BAI Fenglong, DOU Yanguang. GRAIN-SIZE DISTRIBUTION OF SURFACE SEDIMENTS OF THE LIAODONG BAY,BOHAI AND SEDIMENTARY ENVIRONMENT RESTORATION[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 35-42. DOI: 10.3724/SP.J.1140.2012.05035
    [9]WANG Hua-qiang, GAO Shu. TIDAL FLAT SEDIMENT CHARACTERISTICS AND TRANSPORT TRENDS ALONG THE NORTHERN BANK OF HANGZHOU BAY[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 25-30.
    [10]LIU Rui, ZHENG Hong-bo. GRAIN-SIZE CHARACTERISTICS OF THE FIRST HARD CLAY AND THEIR ENVIRONMENTAL IMPLICATIONS DURING THE LAST GLACIAL MAXIMUM IN THE HANGZHOU BAY REGION[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 27-34.
  • Cited by

    Periodical cited type(1)

    1. 王迎,李江海,马昌明,宋珏琛. 基于离散元法的龙门山构造带隆升变形主控因素研究. 北京大学学报(自然科学版). 2022(05): 850-860 .

    Other cited types(4)

Catalog

    Article views (3185) PDF downloads (41) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return