Citation: | Weijie HAO, Xiaotong XIAO, Meixun ZHAO. The research progress of IP25 in Arctic Sea ice reconstruction[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 56-65. DOI: 10.16562/j.cnki.0256-1492.2018041801 |
[1] |
Thomas D N, Dieckmann G S. Sea Ice [M]. Oxford: Blackwell Publishing, 2010.
|
[2] |
高众勇, 陈立奇, 蔡卫君, 等.全球变化中的北极碳汇:现状与未来[J].地球科学进展, 2007, 22(8):857-865. doi: 10.3321/j.issn:1001-8166.2007.08.012
GAO Zhongyong, CHEN Liqi, CAI Weijun, et al. Arctic carbon sink in global Change: Present and future [J]. Advances in Earth Science, 2007, 22(8):857-865. doi: 10.3321/j.issn:1001-8166.2007.08.012
|
[3] |
陈建芳, 金海燕, 李宏亮, 等.北极快速变化对北冰洋碳汇机制和过程的影响[J].科学通报, 2015, 60(35):3406-3416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201535002
CHEN Jianfang, JIN Haiyan, LI Hongliang, et al. Carbon sink mechanism and processes in the Arctic Ocean under arctic rapid change [J]. Chinese Science Bulletin, 2015, 60(35):3406-3416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201535002
|
[4] |
Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): 1-11. http://d.old.wanfangdata.com.cn/Periodical/hyxb201605007
|
[5] |
Wang M, Overland J E. A sea ice free summer Arctic within 30years: An update from CMIP5 models[J]. Geophysical Research Letters, 2012, 36(7): 550-556.
|
[6] |
Liu J, Song M, Horton R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[C]// Proceedings of the National Academy of Sciences of the United States of America. 2013, 110(31): 12571-12576.
|
[7] |
刘萍.北极航道开通对满足我国能源需求的影响及路径分析[D].上海海洋大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10264-1016912769.htm
LIU Ping. Waterway on the Energy Demand in China and Path Analysis[D]. Shanghai Ocean Univercity, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10264-1016912769.htm
|
[8] |
章陶亮, 王汝建, 陈志华, 等.西北冰洋楚科奇海台08P23孔氧同位素3期以来的古海洋与古气候记录[J].极地研究, 2014, 26(1): 46-57. http://d.old.wanfangdata.com.cn/Conference/8982851
ZHANG Taoliang, WANG Rujian, CHEN Zhihua, et al. Paleoceanographic and paleoclimatic records of core 08P23 from the Chukchi Plateau, western Arctic Ocean, since MIS3[J]. Chinese Journal of Polar Reserch, 2014, 26(1): 46-57. http://d.old.wanfangdata.com.cn/Conference/8982851
|
[9] |
Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2010, 27(2):114-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003269444
|
[10] |
O'Regan M, John K S, Moran K, et al. Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge[J]. Quaternary International, 2010, 219(1):168-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb75c39e35510524886b3a3eed52709a
|
[11] |
John K S. Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the LomonosovRidge[J]. Paleoceanography, 2008, 23(1): PA1805.
|
[12] |
Sarnthein M, Pflaumann U, Weinelt M. Past extent of sea ice in the northern North Atlantic inferred from foraminifer-alpaleotemperature estimates[J]. Paleoceanography&Paleoclimatology, 2003, 18(2): 1030. http://www.researchgate.net/publication/235703899_Past_extent_of_sea_ice_in_the_northern_North_Atlantic_inferred_from_foraminiferal_paleotemperature_estimates
|
[13] |
Jiang H, Eiríksson J, Schulz M, et al. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene[J]. Geology, 2005, 33(1):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9af568bafbb706fb3a59cbf18722ed1
|
[14] |
Vernal A D, Rochon A, Fréchette B, et al. Reconstructing past sea ice cover of the northern hemisphere from dinocyst assemblages: status of the approach[J]. Quaternary Science Reviews, 2013, 79(79):122-134. http://www.sciencedirect.com/science/article/pii/S0277379113002424
|
[15] |
沙龙滨.格陵兰西部海域1200年以来硅藻记录及古气候、古海冰重建[D].华东师范大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10269-1012435884.htm
SHA Longbin. Diatom-based reconstruction of palaeoclimatic changes and sea-ice concentration off West Greenland during the last 1200 years[D]. East China Normal University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10269-1012435884.htm
|
[16] |
Schlüter M, Sauter E J, Schäfer A, et al. Spatial budget of organic carbon flux to the seafloor of the northern North Atlantic (60°N-80°N)[J]. Global Biogeochemical Cycles, 2000, 14(1):329-340. doi: 10.1029/1999GB900043
|
[17] |
Knies J, Vogt C, Stein R. Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean[J]. Geo-Marine Letters, 1998, 18(3):195-202. doi: 10.1007/s003670050068
|
[18] |
Belt S T, Massé G, Rowland S J, et al. A novel chemical fossil of palaeo sea ice: IP25 [J]. Organic Geochemistry, 2007, 38 (1): 16-27. doi: 10.1016/j.orggeochem.2006.09.013
|
[19] |
Volkman J K, Barrett S M, Dunstan G A. C25 and C30highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms[J]. Organic Geochemistry, 1994, 21(3-4):407-414. doi: 10.1016/0146-6380(94)90202-X
|
[20] |
Belt S T, Allard W G, Massé G, et al. Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers[J]. Geochimica et Cosmochimica Acta, 2000, 64(22):3839-3851. doi: 10.1016/S0016-7037(00)00464-6
|
[21] |
Belt S T, Massé G, Allard W G, et al. C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus[J]. Organic Geochemistry, 2001, 32(10): 1271-1275. doi: 10.1016/S0146-6380(01)00111-5
|
[22] |
Belt S T, Massé G, Allard W G, et al. Identification of a C25 highly branched isoprenoid triene in the freshwater diatom Navicula sclesvicensis[J]. Organic Geochemistry, 2001, 32(9):1169-1172. doi: 10.1016/S0146-6380(01)00102-4
|
[23] |
Belt S T, Allard W G, Massé G, et al. Structural characterisation of C30 highly branched isoprenoid alkenes (rhizenes) in the marine diatom Rhizosolenia setigera[J]. Tetrahedron Letters, 2001, 42(32):5583-5585. doi: 10.1016/S0040-4039(01)01063-2
|
[24] |
Rowland S J, Robson J N. The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in Recent sediments and biota--A review[J]. Marine Environmental Research, 1990, 30(3): 191-216. doi: 10.1016/0141-1136(90)90019-K
|
[25] |
Rowland S J, Belt S T, Wraige E J, et al. Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia[J]. Phytochemistry, 2001, 56(6): 597-602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84704d069982252d75d14c5c5a86f79c
|
[26] |
Stein R, Fahl K, Schreck M, et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean[J]. Nature Communications, 2016, 7:11148. doi: 10.1038/ncomms11148
|
[27] |
Belt S T, Müller J. The Arctic sea ice biomarker IP25: A review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions[J]. Quaternary Science Reviews, 2013, 79(4):9-25. http://www.sciencedirect.com/science/article/pii/S0277379112005069
|
[28] |
Müller J, Massé G, Stein R, et al. Variability of sea-ice conditions in the Fram Strait over the past 30, 000 years[J]. Nature Geoscience, 2009, 2(11):772-776. doi: 10.1038/ngeo665
|
[29] |
Müller J, Wagner A, Fahl K, et al. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach[J]. Earth & Planetary Science Letters, 2011, 306(3):137-148. http://www.sciencedirect.com/science/article/pii/S0012821X11002275
|
[30] |
Müller J, Stein R. High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts[J]. Earth & Planetary Science Letters, 2014, 403:446-455. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f727631a5f95791f53c1fa631d36fc25
|
[31] |
Xiao X, Fahl K, Müller J, et al. Sea-ice distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 155:16-29. doi: 10.1016/j.gca.2015.01.029
|
[32] |
Volkman J K. Lipid Markers for Marine Organic Matter[M]// Marine Organic Matter: Biomarkers, Isotopes and DNA.Berlin: Springer, 2006: 27-70.
|
[33] |
Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments[J]. Organic Geochemistry, 1998, 29(5-7):1163-1179. doi: 10.1016/S0146-6380(98)00062-X
|
[34] |
Volkman J K, Barrett S M, Dunstan G A, et al. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom[J]. Organic Geochemistry, 1993, 20(1):7-15. doi: 10.1016/0146-6380(93)90076-N
|
[35] |
Müller J, Werner K, Stein R, et al. Holocene cooling culminates in sea ice oscillations in Fram Strait[J]. Quaternary Science Reviews, 2012, 47(47):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb8140ee5cbdba8e734f1cfc53358a91
|
[36] |
Belt S T, Massé G, Vare L L, et al. Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps[J]. Marine Chemistry, 2008, 112(3-4): 158-167. doi: 10.1016/j.marchem.2008.09.002
|
[37] |
Vare L L, Massé G, Gregory T R, et al. Sea ice variations in the central Canadian Arctic Archipelago during the Holocene[J]. Quaternary Science Reviews, 2009, 28(13):1354-1366. http://www.sciencedirect.com/science/article/pii/S0277379109000419
|
[38] |
Fahl K, Stein R. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records[J]. Earth & Planetary Science Letters, 2012, 351-352(11): 123-133. http://www.sciencedirect.com/science/article/pii/S0012821X12003688
|
[39] |
Xiao X, Fahl K, Stein R. Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): Indicators for organic-carbon sources and sea-ice coverage[J]. Quaternary Science Reviews, 2013, 79(8): 40-52. http://www.sciencedirect.com/science/article/pii/S0277379112005306
|
[40] |
Cabedo-Sanz P, Belt S T, Knies J, et al. Identification of contrasting seasonal sea ice conditions during the Younger Dryas[J]. Quaternary Science Reviews, 2013, 79(4):74-86.
|
[41] |
Navarro-Rodriguez A, Belt S T, Knies J, et al. Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions[J]. Quaternary Science Reviews, 2013, 79(8):26-39. http://www.sciencedirect.com/science/article/pii/S0277379112005045
|
[42] |
Stoynova V, Shanahan T M, Hughen K A, et al. Insights into Circum-Arctic sea ice variability from molecular eochemistry[J]. Quaternary Science Reviews, 2013, 79(4):63-73. http://www.sciencedirect.com/science/article/pii/S0277379112003940
|
[43] |
Méheust M, Fahl K, Stein R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: Reconstruction from biomarker data[J]. Organic Geochemistry, 2013, 57(4):54-64. http://www.sciencedirect.com/science/article/pii/S0146638013000107
|
[44] |
Smik L, Cabedo-Sanz P, Belt S T. Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: A further development of the PIP25 index[J]. Organic Geochemistry, 2016, 92:63-69. doi: 10.1016/j.orggeochem.2015.12.007
|
[45] |
Smik L, Belt S T. Distributions of the Arctic sea ice biomarker proxy IP25, and two phytoplanktonic biomarkers in surface sediments from West Svalbard[J]. Organic Geochemistry, 2017, 105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce839d31825f7e800d4556dc6c661aca
|
[46] |
Xiao X, Stein R, Fahl K. MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: Reconstruction from biomarkers[J]. Paleoceanography, 2015, 30(7):969-983. doi: 10.1002/2015PA002814
|
[47] |
Stein R, Fahl K, Gierz P, et al. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial[J]. Nature Communications, 2017, 8(1): 373. doi: 10.1038/s41467-017-00552-1
|
[48] |
Murton J B, Bateman M D, Dallimore S R, et al. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[J]. Nature, 2010, 464(7289):740-743. doi: 10.1038/nature08954
|
[49] |
Hörner T, Stein R, Fahl K, et al. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)-A high-resolution biomarker study[J]. Quaternary Science Reviews, 2016, 143:133-149. doi: 10.1016/j.quascirev.2016.04.011
|
[50] |
Polyak L, Belt S T, Cabedo-Sanz P, et al. Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies[J]. Holocene, 2016, 26(11):1810-1821. doi: 10.1177/0959683616645939
|
[51] |
Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean)[J]. Journal of Quaternary Science, 2017, 32(3):362-379. doi: 10.1002/jqs.2929
|
[52] |
Legendre L, Martineau M J, Therriault J C, et al. Chlorophyll a, biomass and growth of sea-ice microalgae along a salinity gradient (southeastern Hudson Bay, Canadian Arctic)[J]. Polar Biology, 1992, 12(3-4):445-450. doi: 10.1007/BF00243115
|
[53] |
Kaufman D S, Ager T A, Anderson N J, et al. Erratum to: Holocene thermal maximum in the western Arctic (0-180°W) [J]. Quaternary Science Reviews, 2004, 23(18-19):2059-2060. doi: 10.1016/j.quascirev.2004.06.001
|
[54] |
Belt S T, Vare L L, Massé G, et al. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years[J]. Quaternary Science Reviews, 2010, 29(25-26):3489-3504. doi: 10.1016/j.quascirev.2010.06.041
|
[55] |
Porinchu D F, Macdonald G M, Rolland N. A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago[J]. Journal of Paleolimnology, 2009, 41(1):177-188. doi: 10.1007/s10933-008-9263-x
|
[56] |
Zabenskie S, Gajewski K. Post-glacial climatic change on Boothia Peninsula, Nunavut, Canada[J]. Quaternary Research, 2007, 68(2):261-270. doi: 10.1016/j.yqres.2007.04.003
|
[57] |
Kolling H M, Stein R, Fahl K, et al. Short-term variability in late Holocene sea ice cover on the East Greenland Shelf and its driving mechanisms[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 485:336-350. doi: 10.1016/j.palaeo.2017.06.024
|
[58] |
Massé G, Rowland S J, Sicre M A, et al. Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions[J]. Earth & Planetary Science Letters, 2008, 269(3-4):565-569. http://www.sciencedirect.com/science/article/pii/S0012821X0800174X
|
[59] |
Andrews J T. Seeking a Holocene drift ice proxy: non-clay mineral variations from the SW to N-central Iceland shelf: trends, regime shifts, and periodicities[J]. Journal of Quaternary Science, 2009, 24(7): 664-676. doi: 10.1002/jqs.1257
|
[60] |
Axford Y, Andresen C S, Andrews J T, et al. Do paleoclimate proxies agree? A test comparing 19 late Holocene climate and sea-ice reconstructions from Icelandic marine and lake sediments[J]. Journal of Quaternary Science, 2011, 26(6):645-656. doi: 10.1002/jqs.1487
|
[61] |
Cabedo-Sanz P, Belt S T, Jennings A E, et al. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation[J]. Quaternary Science Reviews, 2016, 146:99-115. doi: 10.1016/j.quascirev.2016.06.012
|
[62] |
Xiao X, Zhao M, Knudsen K L, et al. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes[J]. Earth & Planetary Science Letters, 2017, 472:14-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e7b99c72cb9c49b95e74b2c56760bb4
|
[63] |
Clotten C, Stein R, Fahl K, et al. Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907)[J]. Earth & Planetary Science Letters, 2018, 481:61-72. http://www.researchgate.net/publication/320518930_Seasonal_sea_ice_cover_during_the_warm_Pliocene_Evidence_from_the_Iceland_Sea_ODP_Site_907
|
[64] |
Max L, Riethdorf J R, Tiedemann R, et al. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15000 years[J]. Paleoceanography, 2012, 27(3):3213-3232.
|
[65] |
Méheust M, Stein R, Fahl K, et al. High-resolution IP25 -based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18, 000 years[J]. Geo-Marine Letters, 2015, 36(2): 101-111.
|
[66] |
Ruan J, Huang Y, Shi X, et al. Holocene variability in sea surface temperature and sea ice extent in the northern Bering Sea: A multiple biomarker study[J]. Organic Geochemistry, 2017, 113:1-9. doi: 10.1016/j.orggeochem.2017.08.006
|
[67] |
Kim J H, Rimbu N, Lorenz S J, et al. North Pacific and North Atlantic sea-surface temperature variability during the Holocene[J]. Quaternary Science Reviews, 2004, 23(20-22):2141-2154. doi: 10.1016/j.quascirev.2004.08.010
|
[68] |
Brown T A, Belt S T, Tatarek A, et al. Source identification of the Arctic sea ice proxy IP25[J]. Nature Communications, 2014, 5: 4197. doi: 10.1038/ncomms5197
|
[69] |
Brown T A. Production and preservation of the Arctic sea ice diatom biomarker IP25[D]. University of Plymouth, 2011.
|
1. |
任帅波. 工程物探调查技术及其现场质控应用分析. 价值工程. 2025(04): 136-138 .
![]() |