Citation: | ZHANG Zihan,REN Yupeng,TAO Wei,et al. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology,2024,44(4):78-87. DOI: 10.16562/j.cnki.0256-1492.2023032301 |
High-speed turbidity currents are very destructive and threaten the safety of seabed constructions. An important channel for turbidity currents to move to the deep sea is submarine canyons, of which many have multiple branches. Once a branch meets the canyon with turbidity currents, the sand content and the velocity of turbidity currents could be increased, and so the destructive power. We studied the changes in sand content and movement velocity of turbidity currents in branch canyons converging into the main canyon, to which the scenario of turbidity currents in main-canyon-only was compared. Result show that the height, sand content and velocity of turbidity currents were increased at the head when confluence occurred, and decreased after the confluence occurred. However, the sand content and the velocity were still larger than those without confluence. This study provided guidelines for site selection and velocity calculation for field monitoring when turbidity currents confluence occurs in branch canyons.
[1] |
徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105
XU Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10):98-105.]
|
[2] |
Heerema C J, Talling P J, Cartigny M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532:116023. doi: 10.1016/j.jpgl.2019.116023
|
[3] |
许莎莎, 冯秀丽, 冯利, 等. 南海西北部莺琼陆坡36.6 ka以来的浊流沉积[J]. 海洋地质与第四纪地质, 2020, 40(5):15-24
XU Shasha, FENG Xiuli, FENG Li, et al. Turbidite records since 36.6 ka at the Yingqiong continental slope in the Northwest of South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5):15-24.]
|
[4] |
Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8):675-678. doi: 10.1130/G45178.1
|
[5] |
郑旭峰, 李安春, 万世明, 等. 冲绳海槽中全新世的浊流沉积及其控制因素[J]. 第四纪研究, 2014, 34(3):579-589 doi: 10.3969/j.issn.1001-7410.2014.03.12
ZHENG Xufeng, LI Anchun, WAN Shiming, et al. The turbidity events in Okinawa trough during middle Holocene and its potential dominating mechanisms[J]. Quaternary Sciences, 2014, 34(3):579-589.] doi: 10.3969/j.issn.1001-7410.2014.03.12
|
[6] |
Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8:275-310. doi: 10.1146/annurev.fl.08.010176.001423
|
[7] |
徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558
XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5):552-558.]
|
[8] |
Carter L, Gavey R, Talling P J, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2):58-67. doi: 10.5670/oceanog.2014.40
|
[9] |
Wang X X, Cai F, Sun Z L, et al. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha Slope, South China Sea[J]. Geomorphology, 2022, 410:108285. doi: 10.1016/j.geomorph.2022.108285
|
[10] |
李梦君, 毕乃双, 胡丽沙, 等. 南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义[J]. 海洋地质与第四纪地质, 2019, 39(4):23-33
LI Mengjun, BI Naishang, HU Lisha, et al. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV "Jiaolong" in the Taiwan Submarine Canyon, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(4):23-33.]
|
[11] |
王长盛, 朱俊江, 赵冬冬, 等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿, 2021, 37(3):1-15
WANG Changsheng, ZHU Junjiang, ZHAO Dongdong, et al. Origin and evolution of submarine canyons[J]. Marine Geology Frontiers, 2021, 37(3):1-15.]
|
[12] |
Yu H S, Chiang C S, Shen S M. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon[J]. Journal of Marine Systems, 2009, 76(4):369-382. doi: 10.1016/j.jmarsys.2007.07.010
|
[13] |
Li S, Li W, Alves T M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, Northeast South China Sea[J]. Marine Geology, 2020, 424:106158. doi: 10.1016/j.margeo.2020.106158
|
[14] |
Talling P J, Baker M L, Pope E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13(1):4193. doi: 10.1038/s41467-022-31689-3
|
[15] |
Forel F A. Les ravins sous-lacustres des fleuves glaciaires[J]. Comptes Rendus de l’Académie des Sciences Paris, 1885, 101:725-728.
|
[16] |
Kuenen P H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen, 1937, 8(2):327-351.
|
[17] |
Felix M, Sturton S, Peakall J. Combined measurements of velocity and concentration in experimental turbidity currents[J]. Sedimentary Geology, 2005, 179(1-2):31-47. doi: 10.1016/j.sedgeo.2005.04.008
|
[18] |
Nogueira H I S, Adduce C, Alves E, et al. Analysis of lock-exchange gravity currents over smooth and rough beds[J]. Journal of Hydraulic Research, 2013, 51(4):417-431. doi: 10.1080/00221686.2013.798363
|
[19] |
Ho V L, Dorrell R M, Keevil G M, et al. Pulse propagation in turbidity currents[J]. Sedimentology, 2018, 65(2):620-637. doi: 10.1111/sed.12397
|
[20] |
Bowen A J, Normark W R, Piper D J W. Modelling of turbidity currents on Navy submarine fan, California continental borderland[M]//Stow D A V. Deep‐Water Turbidite Systems. International Association of Sedimentologists, 1991: 7-23.
|
[21] |
Stacey M W, Bowen A J. The vertical structure of turbidity currents and a necessary condition for self‐maintenance[J]. Journal of Geophysical Research:Oceans, 1988, 93(C4):3543-3553. doi: 10.1029/JC093iC04p03543
|
[22] |
Abd El-Gawad S M, Pirmez C, Cantelli A, et al. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta[J]. Marine Geology, 2012, 326-328:55-66. doi: 10.1016/j.margeo.2012.06.003
|
[23] |
Salles T, Mulder T, Gaudin M, et al. Simulating the 1999 Capbreton canyon turbidity current with a Cellular Automata model[J]. Geomorphology, 2008, 97(3-4):516-537. doi: 10.1016/j.geomorph.2007.09.005
|
[24] |
Basani R, Janocko M, Cartigny M J B, et al. MassFLOW‐3DTM as a simulation tool for turbidity currents: some preliminary results[M]//Martinius A W, Ravnås R, Howell J A, et al. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Chichester: Wiley Blackwell, 2014: 587-608.
|
[25] |
Sun Y N, Li J, Cao Z X, et al. Effect of tributary inflow on reservoir turbidity current[J]. Environmental Fluid Mechanics, 2023, 23(2):259-290. doi: 10.1007/s10652-022-09856-3
|
[26] |
Heimsund S. Numerical simulation of turbidity currents: a new perspective for small-and large-scale sedimentological experiments[D]. Master Dissertation of the University of Bergen, 2007.
|
[27] |
Heimsund S, Xu J P, Nemec W. Numerical simulation of recent turbidity currents in the Monterey Canyon system, offshore California[C]//AGU Fall Meeting Abstracts. 2007.
|
[28] |
栾坤祥. 南海北部海底峡谷识别方法构建与峡谷特征分析[D]. 国家海洋局第一海洋研究所硕士学位论文, 2017
LUAN Kunxiang. The construction identification method of submarine canyon and characteristics analysis of northern South China sea[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2017.]
|
[29] |
张春生, 刘忠保, 施冬, 等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报, 2002, 20(1):25-29
ZHANG Chunsheng, LIU Zhongbao, SHI Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1):25-29.]
|
1. |
张冲,叶青,周伟,陈建,李华. 基于力学层划分的火成岩潜山裂缝分形维变识别方法. 地球科学. 2025(02): 521-534 .
![]() | |
2. |
汪泽成,江青春,王居峰,龙国徽,程宏岗,施亦做,孙琦森,姜华,阿布力米提·依明,曹正林,徐洋,陆加敏,黄林军. 基岩油气成藏特征与中国陆上深层基岩油气勘探方向. 石油勘探与开发. 2024(01): 28-38 .
![]() | |
3. |
卫志杰,甘军,吴怡,李金池,何文涛,王文博. 琼东南盆地深水区潜山油气成藏条件分析及有利目标预测——以陵南低凸起为例. 天然气地球科学. 2024(02): 313-326 .
![]() | |
4. |
汪泽成,赵振宇,黄福喜,施亦做,徐洋,张帅. 中国中西部含油气盆地超深层油气成藏条件与勘探潜力分析. 世界石油工业. 2024(01): 33-48 .
![]() | |
5. |
WANG Zecheng,JIANG Qingchun,WANG Jufeng,LONG Guohui,CHENG Honggang,SHI Yizuo,SUN Qisen,JIANG Hua,ABULIMITI Yiming,CAO Zhenglin,XU Yang,LU Jiamin,HUANG Linjun. Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China. Petroleum Exploration and Development. 2024(01): 31-43 .
![]() |
|
6. |
李磊,李宁,尹文笋,张武,何新建. 西湖凹陷平湖斜坡A潜山储层特征与裂缝预测. 海洋石油. 2024(02): 22-28 .
![]() | |
7. |
何雁兵,肖张波,郑仰帝,刘君毅,易浩,赵庆,张月霞,贺勇. 珠江口盆地陆丰13洼转换带中生界陆丰7-9潜山成藏特征. 岩性油气藏. 2023(03): 18-28 .
![]() | |
8. |
徐乐意,徐昉昊,牛胜利,熊万林,李智超. 珠江口盆地HZ26-6构造“双古”领域油气成藏特点与富集规律. 成都理工大学学报(自然科学版). 2023(02): 138-147 .
![]() | |
9. |
曾春珉,魏安超,刘书杰,蒋东雷,刘培锴,邱正松,刘钲凯. 南海某区块保护储层自降解防漏堵漏钻井液技术研究. 能源化工. 2023(02): 53-57 .
![]() | |
10. |
李磊,张武,何新建,孙永壮,赵天亮. 东海西湖凹陷平湖斜坡带基底潜山储层发育模式. 上海国土资源. 2023(02): 134-139 .
![]() | |
11. |
赵文智,汪泽成,黄福喜,赵振宇,姜华,徐洋. 中国陆上叠合盆地超深层油气成藏条件与勘探地位. 石油学报. 2023(12): 2020-2032 .
![]() | |
12. |
王建强,梁杰,陈建文,赵青芳,张银国,董贺平. 中国近海基岩油气藏分布特征及其控制因素. 科学技术与工程. 2022(03): 863-872 .
![]() | |
13. |
李鸿明,王璞珺,徐守立,刘迎松,吴仕玖,焦垚祺,王岩泉,刘亚南,宋国民,张艳. 琼东南盆地松南低凸起前古近系花岗岩潜山储层特征与控制因素. 世界地质. 2022(03): 568-582 .
![]() | |
14. |
张智凯. 琼东南盆地深水潜山YL2井裂缝发育特征. 石化技术. 2022(09): 138-140 .
![]() | |
15. |
郭原草,郭建华,李智宇,余烨,黄俨然. 琼东南盆地YLA区花岗岩潜山风化壳地质模型. 中南大学学报(自然科学版). 2022(09): 3462-3473 .
![]() | |
16. |
毛敏,袁胜斌,张立刚,李大冬,苗振华,李浩. 蚀变闪长岩潜山储层矿物组分特征与孔隙度的关系. 非常规油气. 2022(06): 14-19+33 .
![]() | |
17. |
刘林鑫,杜贵超. 扫描电镜法在石油储层评价中的应用. 录井工程. 2022(04): 47-53 .
![]() | |
18. |
宋爱学,杨金海,胡斌,刘亿,任丽娟,曹俊兴. 琼东南盆地深水区古潜山裂缝性储层展布特征及有利区含油气性预测. 海洋地质前沿. 2021(07): 60-67 .
![]() | |
19. |
黄时卓,宋鹏,朱继田,李芳,毛雪莲,廖键. 基于深水区宽频地震的天然气水合物识别方法. 海洋地质前沿. 2021(07): 52-59 .
![]() | |
20. |
邱宇,李安琪,周杰,宋爱学,胡斌. 琼东南盆地深水区松南低凸起花岗岩风化壳储层底界面识别技术. 海洋地质前沿. 2021(07): 87-96 .
![]() | |
21. |
刘杰,徐国盛,温华华,史玉玲,蔡俊杰,徐昉昊. 珠江口盆地惠州26-6构造古潜山—古近系油气成藏主控因素. 天然气工业. 2021(11): 54-63 .
![]() | |
22. |
王建强,梁杰,陈建文,张银国,赵青芳,董贺平,李双林,孙晶. 中国海域基岩油气藏特征及未来勘探方向. 海洋地质与第四纪地质. 2021(06): 151-162 .
![]() | |
23. |
冷杰,刘杰,陈安清,蔡俊杰,何陵沅,侯明才,曹海洋,黄志发,钟灵. 珠江口盆地惠州26-6潜山中生代中基性火山岩储层成因. 成都理工大学学报(自然科学版). 2021(06): 661-674 .
![]() |