CHEN Jie, HU Gaowei, BU Qingtao, WANG Xiujuan, JING Pengfei, LIU Changling, GUO Yang, WANG Zihao. Estimated gas hydrate saturation from the reservoir of clayey silt with sandy interlayers at Site U1517, Tuaheni landslide complex on the Hikurangi margin, New Zealand[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 159-168. DOI: 10.16562/j.cnki.0256-1492.2019111302
Citation: CHEN Jie, HU Gaowei, BU Qingtao, WANG Xiujuan, JING Pengfei, LIU Changling, GUO Yang, WANG Zihao. Estimated gas hydrate saturation from the reservoir of clayey silt with sandy interlayers at Site U1517, Tuaheni landslide complex on the Hikurangi margin, New Zealand[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 159-168. DOI: 10.16562/j.cnki.0256-1492.2019111302

Estimated gas hydrate saturation from the reservoir of clayey silt with sandy interlayers at Site U1517, Tuaheni landslide complex on the Hikurangi margin, New Zealand

More Information
  • Received Date: November 12, 2019
  • Revised Date: January 01, 2020
  • Available Online: August 10, 2020
  • Accurate assessment of natural gas hydrate saturation and reservoir distribution in the Tuaheni landslide complex (TLC) area on the Hikurangi margin, New Zealand plays a critical role in explaining the creeping TLC phenomenon and its forming mechanisms. Gas hydrates are discovered in the interval from 104 mbsf to the BGHS at 160 mbsf based on the logging- while-drilling (LWD) and coring data from the site U1517 located on the extensional and creeping part of the TLC. Elevated P-wave velocity (>1.7 km/s), electrical resistivity (>1.5 Ω·m), and the high saturation intervals occur in 112~114 mbsf, 130~145 mbsf and 150~160 mbsf respectively. The mineral components of different well intervals are used to calculate the P-wave velocity, to estimate the gas hydrate saturation of the 104~160 mbsf interval with the simplified three-phase equation (STPE) and the biot- gassmann theory by Lee (BGTL) models, and the average saturation was 5.2% and 6.0% and the highest was 22.7% and 21.6%, respectively. Adoption of the new method made it more efficient to get BGTL model parameters. Compared with the hydrate saturation estimated by the Expedition 372 from the Archie equation was used, the average gas hydrate saturation is similar in the 104~160 mbsf interval (about 6.0%) and about 8.5% in the interval of 130~145 mbsf. In this study, two sound velocity models were used to estimate the hydrate saturation of U1517, making the results more reliable. The accurate estimation of the gas hydrate saturation and distribution at site U1517 will provide basic data for simulation of the creeping TLC phenomenon on the Hikurangi margin.
  • [1]
    Nixon M F, Grozic J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quantification [J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325. doi: 10.1139/t06-121
    [2]
    Brewer P G. Gas hydrates and global climate change [J]. Annals of the New York Academy of Sciences, 2000, 912(1): 195-199.
    [3]
    Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701-704. doi: 10.1126/science.aaf2349
    [4]
    Mountjoy J J, Pecher I, Henrys S, et al. Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(11): 4137-4156. doi: 10.1002/2014GC005379
    [5]
    Singh C. Multiphase fluid flow in presence of Transverse Magnetic Field [J]. Eos Transactions American Geophysical Union, 1987(53).
    [6]
    Townend J. Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand [J]. Marine Geology, 1997, 141(1-4): 209-220. doi: 10.1016/S0025-3227(97)00073-X
    [7]
    Henrys S A, Ellis S, Uruski C. Conductive heat flow variations from bottom-simulating reflectors on the Hikurangi margin, New Zealand [J]. Geophysical Research Letters, 2003, 30(2): 1065.
    [8]
    Pecher I A, Henrys S A, Zhu H. Seismic images of gas conduits beneath vents and gas hydrates on Ritchie Ridge, Hikurangi margin, New Zealand [J]. New Zealand Journal of Geology and Geophysics, 2004, 47(2): 275-279. doi: 10.1080/00288306.2004.9515054
    [9]
    Crutchley G J, Pecher I A, Gorman A R, et al. Seismic imaging of gas conduits beneath seafloor seep sites in a shallow marine gas hydrate province, Hikurangi Margin, New Zealand [J]. Marine Geology, 2010, 272(1-4): 114-126. doi: 10.1016/j.margeo.2009.03.007
    [10]
    Navalpakam R S, Pecher I A, Stern T. Weak and segmented bottom simulating reflections on the Hikurangi Margin, New Zealand—Implications for gas hydrate reservoir rocks [J]. Journal of Petroleum Science & Engineering, 2012, 88-89: 29-40.
    [11]
    Gorman A R, Fletcher P T, Baker D, et al. Characterisation of focused gas hydrate accumulations from the Pegasus Basin, New Zealand, using high-resolution and conventional seismic data [J]. ASEG Extended Abstracts, 2018, 2018(1): 1-4.
    [12]
    Schwalenberg K, Haeckel M, Poort J, et al. Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand [J]. Marine Geology, 2010, 272(1-4): 79-88. doi: 10.1016/j.margeo.2009.07.006
    [13]
    Schwalenberg K, Wood W, Pecher I, et al. Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand [J]. Marine Geology, 2010, 272(1-4): 89-98. doi: 10.1016/j.margeo.2009.10.024
    [14]
    Schwalenberg K, Rippe D, Koch S, et al. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(5): 3334-3350. doi: 10.1002/2016JB013702
    [15]
    Faure K, Greinert J, Pecher I A, et al. Methane seepage and its relation to slumping and gas hydrate at the Hikurangi margin, New Zealand [J]. New Zealand Journal of Geology and Geophysics, 2006, 49(4): 503-516. doi: 10.1080/00288306.2006.9515184
    [16]
    Naudts L, Greinert J, Poort J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane [J]. Marine Geology, 2010, 272(1-4): 233-250. doi: 10.1016/j.margeo.2009.08.002
    [17]
    Greinert J, Lewis K B, Bialas J, et al. Methane seepage along the Hikurangi Margin, New Zealand: Overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations [J]. Marine Geology, 2010, 272(1-4): 6-25. doi: 10.1016/j.margeo.2010.01.017
    [18]
    Fraser D R A, Gorman A R, Pecher I A, et al. Gas hydrate accumulations related to focused fluid flow in the Pegasus Basin, southern Hikurangi Margin, New Zealand [J]. Marine and Petroleum Geology, 2016, 77: 399-408. doi: 10.1016/j.marpetgeo.2016.06.025
    [19]
    Crutchley G J, Kroeger K F, Pecher I A, et al. Gas hydrate formation amid submarine canyon incision: Investigations from New Zealand’s Hikurangi subduction margin [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4299-4316. doi: 10.1002/2017GC007021
    [20]
    Crutchley G J, Kroeger K F, Pecher I A, et al. How tectonic folding influences gas hydrate formation: New Zealand's Hikurangi subduction margin [J]. Geology, 2019, 47(1): 39-42. doi: 10.1130/G45151.1
    [21]
    Gross F, Mountjoy J J, Crutchley G J, et al. Free gas distribution and basal shear zone development in a subaqueous landslide-Insight from 3D seismic imaging of the Tuaheni Landslide Complex, New Zealand [J]. Earth and Planetary Science Letters, 2018, 502: 231-243. doi: 10.1016/j.jpgl.2018.09.002
    [22]
    胡高伟, 李承峰, 业渝光, 等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报, 2014, 57(5):1675-1682. [HU Gaowei, LI Chengfeng, YE Yuguang, et al. Observation of gas hydrate distribution in sediment pore space [J]. Chinese Journal of Geophysics, 2014, 57(5): 1675-1682. doi: 10.6038/cjg20140530
    [23]
    Hu G W, Ye Y G, Zhang J, et al. Acoustic response of gas hydrate formation in sediments from South China Sea [J]. Marine and Petroleum Geology, 2014, 52: 1-8. doi: 10.1016/j.marpetgeo.2014.01.007
    [24]
    Bu Q T, Hu G W, Ye Y G, et al. The elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems [J]. Journal of Geophysics and Engineering, 2017, 14(3): 555-569. doi: 10.1088/1742-2140/aa6493
    [25]
    Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Transactions of AIME, 1942, 146(1): 54-62. doi: 10.2118/942054-G
    [26]
    Montaron B. Connectivity theory-a new approach to modeling non-Archie rocks [J]. Petrophysics, 2009, 50(2): 102-115.
    [27]
    Lee M W, Hutchinson D R, Collett T S, et al. Seismic velocities for hydrate-bearing sediments using weighted equation [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B9): 20347-20358. doi: 10.1029/96JB01886
    [28]
    Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling [J]. Geophysical Research Letters, 1999, 26(13): 2021-2024. doi: 10.1029/1999GL900421
    [29]
    Lee M W. Modified Biot-Gassmann theory for calculating elastic velocities for unconsolidated and consolidated sediments [J]. Marine Geophysical Researches, 2002, 23(5-6): 403-412.
    [30]
    Lee M W, Waite W F. Estimating pore-space gas hydrate saturations from well log acoustic data [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07008.
    [31]
    Lee M W. Models for gas hydrate-bearing sediments inferred from hydraulic permeability and elastic velocities[R]. Scientific Investigations Report 2008-5219. U. S. Geological Survey, 2008.
    [32]
    王秀娟, 钱进, Lee M. 天然气水合物和游离气饱和度评价方法及其在南海北部的应用[J]. 海洋地质与第四纪地质, 2017, 37(5):35-47. [WANG Xiujuan, QIAN Jin, Lee M. Methods for estimation of gas hydrate and free gas saturations and application to the northern slope of South China Sea [J]. Marine Geology and Quaternary Geology, 2017, 37(5): 35-47.
    [33]
    Lee M W, Collett T S. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea [J]. Marine and Petroleum Geology, 2013, 47: 195-203. doi: 10.1016/j.marpetgeo.2012.09.004
    [34]
    Wang X J, Lee M, Collett T, et al. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea [J]. Marine and Petroleum Geology, 2014, 51: 298-306. doi: 10.1016/j.marpetgeo.2014.01.002
    [35]
    Hu G W, Ye Y G, Zhang J, et al. Acoustic properties of gas hydrate-bearing consolidated sediments and experimental testing of elastic velocity models [J]. Journal of Geophysical Research, 2010, 115(B2): B02102.
    [36]
    Pecher I A, Barnes P M, LeVay L J, et al. International ocean discovery program expedition 372 preliminary report creeping gas hydrate slides and Hikurangi LWD [J]. Integrated Ocean Drilling Program: Preliminary Reports, 2018, 372: 1-35.
    [37]
    Pecher I A, Barnes P M, LeVay L J, et al. Proceedings of the International Ocean Discovery Program, 372A[Z]. College Station, TX: International Ocean Discovery Program, 2019.
    [38]
    Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments [J]. Reviews of Geophysics, 2009, 47(4): RG4003.
    [39]
    Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.
    [40]
    Lee M W. Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones[R]. U. S. Geological Survey, 2005.
    [41]
    Mindlin R D. Compliance of elastic bodies in contact [J]. Journal of Applied Mechanics, 1949, 16(3): 259-268.
    [42]
    Han D H, Nur A, Morgan D. Effects of porosity and clay content on wave velocities in sandstones [J]. Geophysics, 1986, 51(11): 2093-2107. doi: 10.1190/1.1442062
    [43]
    Tiab D, Donaldson E C. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties[M]. 3rd ed. Houston: Gulf Professional Publishing, 2012.
  • Cited by

    Periodical cited type(10)

    1. 李江涛,胡高伟,王任一,项燚伟,纪云开,李润彤,张永年,冯大强. 海域天然气水合物开采对疏松砂岩气藏开发技术的借鉴与创新. 天然气工业. 2025(04): 193-202 .
    2. 刘涛,包雪阳,朱翔宇,李安昱. 含天然气水合物储层衰减岩石物理研究进展. 地球与行星物理论评(中英文). 2024(03): 369-380 .
    3. 黄佳佳,蒋明镜,王华宁. 中国南海神狐海域水合物储层井壁稳定可靠度分析. 岩土力学. 2024(05): 1505-1516 .
    4. 胡高伟,卜庆涛,赵亚鹏,赵文高,王自豪,邱晓倩,刘童. 不同类型水合物成藏特征研究进展. 地质学报. 2024(09): 2557-2578 .
    5. 张懿帆,徐顺义,陆祎晨,蒋海岩,袁士宝,任梓寒,王哲. 储层物性变化对天然气水合物分解的影响研究. 石油工业技术监督. 2024(12): 40-46 .
    6. 蒋海岩,王浚九,王哲,袁士宝,吕涛. 天然气水合物储层出砂预测方法讨论. 石油工业技术监督. 2023(01): 1-5 .
    7. 马宝金,车家琪,王剑,任京文,邓君宇,房东辉. 海域天然气水合物开采方案设计及气液分离特性分析. 石油工程建设. 2023(01): 1-7 .
    8. 王磊. 井液侵入水合物储层井壁力学稳定性分析. 西南石油大学学报(自然科学版). 2023(02): 87-96 .
    9. 王志刚,巩建雨,吴纪修,尹浩,施山山,闫家,李小洋. 海域天然气水合物钻完井关键技术研究进展. 科技导报. 2023(20): 71-78 .
    10. 靳继凯,温欣,张艺博,赵春晖. 基于机器学习的深海能源土降压开采沉降预测. 工业技术与职业教育. 2023(06): 16-19 .

    Other cited types(11)

Catalog

    Article views (2627) PDF downloads (51) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return