洋底热液喷口系统的微生物成矿研究进展

孙治雷, 何拥军, 李军, 齐崇阳, 李季伟, 刘维亮

孙治雷, 何拥军, 李军, 齐崇阳, 李季伟, 刘维亮. 洋底热液喷口系统的微生物成矿研究进展[J]. 海洋地质与第四纪地质, 2011, 31(3): 123-132. DOI: 10.3724/SP.J.1140.2011.03123
引用本文: 孙治雷, 何拥军, 李军, 齐崇阳, 李季伟, 刘维亮. 洋底热液喷口系统的微生物成矿研究进展[J]. 海洋地质与第四纪地质, 2011, 31(3): 123-132. DOI: 10.3724/SP.J.1140.2011.03123
SUN Zhilei, HE Yongjun, LI Jun, QI Chongyang, LI Jiwei, LIU Weiliang. THE RECENT PROGRESS OF SUBMARINE HYDROTHERMAL BIOMINERALIZATION[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132. DOI: 10.3724/SP.J.1140.2011.03123
Citation: SUN Zhilei, HE Yongjun, LI Jun, QI Chongyang, LI Jiwei, LIU Weiliang. THE RECENT PROGRESS OF SUBMARINE HYDROTHERMAL BIOMINERALIZATION[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132. DOI: 10.3724/SP.J.1140.2011.03123

洋底热液喷口系统的微生物成矿研究进展

基金项目: 

国家自然科学基金项目(40976036)

国际海底区域研究开发"十一五"项目(DYXM11502109)

国家自然科学基金青年基金(40906033)

详细信息
    作者简介:

    孙治雷(1975-),男,博士,主要从事与深海环境有关的地球化学与矿物学研究,E-mail:zhileisun@yeah.net

  • 中图分类号: P736.3

THE RECENT PROGRESS OF SUBMARINE HYDROTHERMAL BIOMINERALIZATION

  • 摘要: 现代洋底热液喷口系统的微生物成矿研究进展是地球自身发展、生命演化、洋底下的生物圈层以及天文微生物探索工作得以有效开展的重要保障。近10余年来,随着微电子和分子生物学技术的发展,热液系统微生物成矿研究得以拓展和深入,逐渐成为地质微生物学研究的一个热点领域。当前在全球的热液喷口系统已经发现微生物在包括Fe、Mn、S、Si的氧化物以及硅酸盐矿物的形成过程中起到了重要甚至关键性的作用,同时热液喷口系统依赖于无机化能代谢活动存在的微生物的矿化成为人们理解生命形式与无机地球相互作用历史的最关键的证据之一,已经从根本上补充甚至修正了生命科学与地球演化的一些核心观点。总结了近年来热液喷口系统微生物成矿研究的最新进展,论述了该环境中微生物成矿的机制和类型,探讨了微生物和部分矿物之间的相互作用以及现代热液微生物成矿研究的地质意义,以期加深人们对热液喷口微生物成矿过程的理解与重视。
    Abstract: The study of biomineralization in modern hydrothermal vent system is one of the keys to the research and the exploring of the early history of the earth, the evolution of life, the subsurface biosphere and the study of terrestrial planets (such as the Mar). It has in the past decade become one of the focuses of geobiological research with the application of the microelectronic technology and molecular biology technology. Available information indicates that microorganisms play a critical role in the formation of oxyhydroxides (for instance, Fe, Mn, S or Si oxyhydroxide) and silicates in the hydrothermal systems of the earth. Furthermore, the biomineralization of modern chemolithoautotrophic microorganisms has been identified to be the nexus of the interaction between the geoshpere and the biosphere and one of the forces to push forward the in-depth study of bioscience and geosciences In this paper, we summarized the ongoing research of hydrothermal bionmieralzaiton, including the biogenic minerals, the microbial biodiversity and the interactions between the minerals and microorganisms. In the foreseeable future, the research of hydrothermal biomineralization will inspire both the development of geosciences and biosciences and deepen our understanding of the earth history, life evolution and even astrobiology.
  • [1]

    Yayanos A A. Microbiology to 10500 meters in the deep-sea[J]. Annual Review of Microbiology, 1995, 49:777-805.

    [2]

    Deming J W. Deep ocean environmental biotechnology[J].Current Opinion in Biotechnology, 1998, 9:283-287.

    [3]

    Vetriani C, Jannasch H W, MacGregor B J, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J]. Applied and Environmental Microbiology, 1999, 65:4375-4384.

    [4]

    Jørgensen B B, Boetius A. Feast and famine-microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5:770-781.

    [5]

    Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift[J]. Science, 1979, 203:1073-1083.

    [6]

    Corliss J B, Baross J A, Hoffman S E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J]. Oceanologica Acta,1981,suppl:59-69.

    [7]

    Baross J A, Hoffman S E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins of Life and Evolution of Biospheres, 1985, 15:327-345.

    [8]

    Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6:805-814.

    [9]

    Johnson K S, Childress J J, Hessler R R, et al. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center[J]. Deep-Sea Research, 1988, 35:1723-1744.

    [10]

    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24:191-224.

    [11]

    Cox J S, Smith D S, Warren L A, et al. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding[J]. Environmental Science & Technology, 1999, 33:4514-4521.

    [12]

    Martinez R E, Smith D S, Kulczycki E, et al. Determination of intrinsic bacterial surface acidity constants using a Donnan shell model and a continuous pKa distribution method[J]. Journal of Colloid and Interface Science, 2002, 253:130-139.

    [13]

    Yee N, Fowle D A, Ferris F G. A Donnan potential model for metal sorption onto Bacillus subtilis[J]. Geochimica et Cosmochimica Acta, 2004, 68:3657-3664.

    [14]

    Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews, 2005, 72:1-19.

    [15]

    Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4:752-764.

    [16]

    Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific[J]. Marine Geology, 1988, 81:227-239.

    [17]

    Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal site[J]. Canadian Mineralogist, 1988, 26:859-869.

    [18]

    Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J]. Applied and Environmental Microbiology, 2002, 68:3085-3093.

    [19]

    Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean[J]. Geomicrobiology Journal, 2003, 20:199-214.

    [20]

    Kennedy C B, Scott S D, Ferris F G. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean[J]. FEMS Microbiology Ecology, 2003, 43:247-254.

    [21]

    Langley S, Igric P, Takahashi Y, et al. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean[J]. Geobiology, 2009, 7:35-49.

    [22]

    Chan C S, Fakra S C, Emerson D, et al. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth:implications for biosignature formation[J]. The ISME Journal, 2011,5:717-727.

    [23]

    Forget N L, Murdock S A, Juniper S K. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes[J]. Geobiology, 2010, 8:417-432.

    [24]

    Rassa A C, McAllister S M, Safran S A. Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii[J]. Geomicrobiology Journal, 2009, 26:623-638.

    [25]

    Emerson D, Rentz J A, Lilburn T G, et al. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities[J]. PLOS ONE,2007, 2(8):e667. doi: 10.1371/journal.pone.0000667.

    [26]

    Emerson D. Microbial oxidation of Fe(Ⅱ) and Mn(Ⅱ) at circumneutral pH, in Environmental Microbe Metal Interactions[M].(ed. D.R. Lovely), ASM Press, Washington DC, 2000:31-52.

    [27]

    Kasama T, Murakami T. The effect of microorganisms on Fe precipitation rates at neutral pH[J]. Chemical Geology, 2001,180:117-128.

    [28]

    Slack J F, Grenne T, Bekker A, et al. Suboxic deep seawater in the late Paleoproterozoic:evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA[J]. Earth and Planetary Science Letters, 2007, 255:243-256.

    [29]

    Boyd T D, Scott S D. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea[J]. Canadian Mineralogist, 1999, 37:973-990.

    [30]

    Zhao J, Huggins F E, Feng Z, et al. Ferrihydrite:Surface structure and its effects on phase transformation[J]. Clays and Clay Minerals, 1994, 42:737-746.

    [31]

    Cornell R M, Schwertmann U. The Iron Oxides:Properties, Reactions, Occurrences and Uses[M]. Berlin:Wiley-VCH, 2003.

    [32]

    Dekov V M, Kamenov G D, Savelli C, et al. Metalliferous sediments from Eolo Seamount (Tyrrhenian Sea):Hydrothermal deposition and re-deposition in a zone of oxygen depletion[J]. Chemical Geology, 2009, 264:347-363.

    [33]

    German C R, von Damm K L. Hydothermal Processes[C]//Treatise on Geochemistry, Elsevier Science Ltd, 2003, 6:181-222.

    [34]

    Farquhar J, Bao H, Thiemens M. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science, 2000, 289:756-758.

    [35]

    Bekker A, Holland H D, Wang P L, et al. Dating the rise of atmospheric oxygen[J]. Nature, 2004, 427:117-120.

    [36]

    Templeton A S, Hubert S, Tebo B M. Diverse Mn(Ⅱ)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount[J]. Geomicrobiology Journal, 2005, 22:127-139.

    [37]

    Santelli C M. Life in the deep sea[J]. Nature Geosciences, 2009, 2:825-826.

    [38]

    Juniper S K, Tebo B M. Microbe-metal interactions and mineral deposition at hydrothermal vents[C]//The Microbiology of Deep-Sea Hydrothermal Vents. New York:CRC Press, 1995:219-253.

    [39]

    Dick G J, Lee Y E, Tebo B M. Manganese(Ⅱ)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes[J]. Applied and Environmental Microbiology, 2006, 72:3184-3190.

    [40]

    Templeton A S, Knowles E J, Eldridge D L, et al. A seafloor microbial biome hosted within incipient ferromanganese crusts[J]. Nature Geoscience, 2009, 2:872-876.

    [41]

    Hastings D, Emerson S. Oxidation of manganese by spores of a marine Bacillus:kinetic and thermodynamic considerations[J]. Geochimica et Cosmochimica Acta, 1986, 50:1819-1824.

    [42]

    Nealson K, Tebo B M, Rosson R A. Occurrence and mechanisms of microbial oxidation of manganese[J]. Advances in Applied Microbiology, 1988, 33:279-318.

    [43]

    Tebo B M, Bargar J R, Clement B G, et al. Biogenic manganese oxides:Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:287-328.

    [44]

    Connell L, Barrett A, Templeton A, et al. Fungal diversity associated with an active deep sea volcano:Vailulu'u Seamount, Samoa[J]. Geomicrobiology Journal, 2009, 26:597-605.

    [45]

    Dick G J, Clement B G, Webb S M, et al. Enzymatic microbial Mn(Ⅱ) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume[J]. Geochimica et Cosmochimica Acta, 2009, 73:6157-6530.

    [46]

    Ehrlich H L. Geomicrobiology,2nd edition[M]. New York:Marcel Dekker, 1990, 646.

    [47]

    Feng X H, Zhu M, Ginder-Vogel M, et al. Formation of nano-crystalline todorokite from biogenic Mn oxides[J]. Geochimica et Cosmochimica Acta, 2010, 74:3232-3245.

    [48]

    Villalobos M, Toner B, Bargar J, et al. Characterization of the manganese oxide produced by pseudomonas putida strain mnb1[J]. Geochimica et Cosmochimica Acta, 2003, 67:2649-2662.

    [49]

    Webb S M, Tebo B M, Bargat J R. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp strain sg-1[J]. American Mineralogist, 2005, 90:1342-1357.

    [50]

    Nelson Y M, Lion L W, Ghiorse W C, et al. Production of biogenic Mn oxides by leprothrix discophora ss-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics[J]. Applied and Environmental Microbiology, 1999, 65:175-180.

    [51]

    Kim H S, Pasten P A, Gaillard J F, et al. Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis[C]. Abstracts of the American Chemical Society, 2004, 227, U1213-U1213.

    [52]

    Villalobos M, Bargar J, Sposito G. Trace metal retention on biogenic manganese oxide nanoparticles[J]. Elements, 2005, 1:223-226.

    [53]

    Ueshima M, Tazaki K. Possible role of microbial polysaccharides in nontronite formation[J]. Clay and Clay Minerals, 2001, 49:292-299.

    [54]

    Fortin D, Ferris F G, Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J]. American Mineralogist, 1998, 83:1399-1408.

    [55]

    Dekov V M, Kamenov G D, Stummeyer J, et al. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)[J]. Chemical Geology, 2007, 245:103-119.

    [56]

    Köhler B, Singer A, Stoffers P. Biogenic nontronite frommarine white smoker chimneys[J]. Clays and Clay Minerals, 1994, 42:689-701.

    [57]

    Ivarsson M, Lindblom S, Broman C, et al. Fossilized microorganisms associated with zeolite carbonate interfaces in sub-seafloor hydrothermal environments[J]. Geobiology, 2008, 6:155-170.

    [58]

    Geptner A, Kristmannsdottir H, Kristjansson J, et al. Biogenic saponite from an active submarine hot spring, Iceland[J]. Clay and Clay Minerals, 2002, 50:174-185.

    [59]

    Tazaki K, Fyfe W S. Microbial green marine clay from Izu-Bonin deep-sea sediments (west Pacific)[J]. Chemical Geology, 1992, 102:105-118.

    [60]

    Konhauser K O, Schiffman P, Fisher Q J. Microbial mediation of authigenic clays during hydrothermal alteration of basaltic tephra, Kilauea Volcano[J]. Geochemistry, Geophysics, Geosystems, 2002, 3, 1075, doi: 10.1029/2002GC000317.

    [61]

    Guidry S A, Chafetz H S. Siliceous shrubs in hot springs from Yellowstone National Park, Wyoming, U.S.A.[J]. Canadian Journal of Earth Sciences, 2003, 40:1571-1583.

    [62]

    Konhauser K O, Phoenix V R, Bottrell S H, et al. Microbial-silica interactions in Icelandic hot spring sinter:possible analogues for some Precambrian siliceous stromatolites[J]. Sedimentology, 2001, 48:415-433.

    [63]

    Jones B, De Ronde C E J, Renaut R W, et al. Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand[J]. Journal of the Geological Society, 2007, 164:227-242.

    [64]

    Stüben D, Eddine Taibi N, McCuthry G M, et al. Growth history of a hydrothermal silica chimney from the Mariana backarc spreading centre (southwest Pacific, 18°13'N)[J]. Chemical Geology, 1994, 113:273-296.

    [65]

    Al-Hanbali H S, Sowerby S J, Holm N G. Biogenicity of silicified microbes from a hydrothermal system:relevance to the search for evidence of life on earth and other planets[J]. Earth and Planetary Science Letters, 2001, 191:213-218.

    [66]

    Fein J B, Scott S, Rivera N. The effect of Fe on Si adsorption by Bacillus subtilis cell walls:insights into non-metabolic bacterial precipitation of silicate minerals[J]. Chemical Geology, 2002, 182:265-273.

    [67]

    Orange F, Westall F, Disnar J -R, et al. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii:applications in the search for evidence of life in early earth and extraterrestrial rocks[J]. Geobiology, 2009, 7:403-418.

    [68]

    Westall F, de Vries S T, Nijman W, et al. The 3.466 Ga "Kitty's Gap Chert", an early Archean microbial ecosystem[J]. Geological Society of America Special Paper, 2006, 405:105-131.

    [69]

    Sievert S M, Hügler M, Taylor C D, et al. Sulfur Oxidation at Deep-Sea Hydrothermal Vents[C]//Microbial Sulfur Metabolism. Heidelberg:Springer, 2008:238-258.

    [70]

    McCollom T, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1997, 61:4375-4391.

    [71]

    Taylor C D, Wirsen C O. Microbiology and ecology of filamentous sulfur formation[J]. Science, 1997, 277:1483-1485.

    [72]

    Taylor C D, Wirsen C O, Gaill F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents[J]. Applied and Environmental Microbiology, 1999, 65:2253-2255.

    [73]

    Nelson D, Haymon R M, Lilley M, et al. Rapid growth of unusual hydrothermal bacteria observed at new vents during ADVENTURE dive program to the EPR crest at 9°45'-52'N[J]. EOS Trans Am Geophys Union, 1991, 72:481.

    [74]

    Embley R W Jr, Chadwick W W, Jonasson I R, et al. Initial results of the rapid response to the 1993 CoAxial event:relationships between hydrothermal and volcanic processes[J]. Geophysical Research Letters, 1995, 22:143-146.

    [75]

    Embley R W, Chadwick W W Jr, Perfit M R, et al. Recent eruptions on the CoAxial segment of the Juan de Fuca ridge:implications for mid-ocean ridge accretion processes[J]. Jouranl of Geophysical Research, 2000, 105:16501-16526.

    [76]

    Moyer C L, Dobbs F C, Karl D M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii[J]. Applied and Environmental Microbiology, 1995, 61:1555-1562.

    [77]

    Foriel J, Philippot P, Susini J, et al. High-resolution imaging of sulfur oxidation states, trace elements, and organic molecules distribution in individual microfossils and contemporary microbial filaments[J]. Geochimica et Cosmochimica Acta, 2004, 68:1561-1569.

    [78]

    Zierenberg R A, Schiffman P. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge[J]. Nature, 1990, 348:155-157.

    [79]

    Eberhard C, Wirsen C O, Jannasch H W. Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents[J]. Geomicrobiology Journal, 1995, 13:145-164.

    [80]

    McCollom, T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes[J]. Deep-sea Research I, 2000,47:85-101.

    [81]

    Verati C, de Donato P, Prieur D, et al. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate)[J]. Chemical Geology, 1999, 158:257-269.

    [82]

    Scott S D. Submarine hydrothermal systems and deposits[C]//Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley, 1997, 797-875.

    [83]

    Wirsen C O, Jannasch H W, Molyneaux S J. Chemosynthetic microbial activity at Mid-Atlantic Ridge Hydrothermal vent sites[J]. Journal of Geophysical Research, 1993, B98:9693-9703.

    [84]

    Edwards K J, McCollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals:Results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta, 2003, 67:2843-2856.

    [85]

    Nisbet E G, Fowler C M R, 1999. Archaean metabolic evolution of microbial mats[J]. Proceedings of the Royal Society of London Series B, 266:2375-2382.

    [86]

    Nisbet E G, Fowler C M R. Some liked it hot[J]. Nature, 1996, 382:404-405.

    [87]

    Nisbet E G. The realms of Archaean life[J]. Nature, 2000, 405:625-626.

    [88]

    Westall F, Southam G. The early record of life[J]. Archean Geodynamics and Environments, 2006, 164:283-304.

    [89]

    Rasmussen B. Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit[J].Nature, 2000, 405:676-679.

    [90]

    Fisk M R, Giovanoni S J, Thorseth I H. Alteration of oceanic volcanic glass:textural evidence of microbial activity[J]. Science, 1998, 281:978-980.

    [91]

    Hofmann B A, Farmer J D, Von Blanckenburg F, et al. Subsurface filamentous Fabrics:an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology[J]. Astrobiology, 2008, 8:87-117.

    [92]

    Kyle J E, Schroeder P A, Wiegel J. Microbial Silicification in Sinters from Two Terrestrial Hot springs in the Uzon Caldera, Kamchatka, Russia[J]. Geomicrobiology Journal, 2007, 24:627-641.

  • 期刊类型引用(9)

    1. 陈馨,张国良. 西菲律宾海乌尔达内塔洋底高原火山岩地球化学和地幔源区特征. 热带海洋学报. 2024(04): 42-56 . 百度学术
    2. Jingjing Gao,Jihua Liu,Hui Zhang,Shijuan Yan,Xiangwen Ren,Quanshu Yan. The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts. Acta Oceanologica Sinica. 2024(08): 58-68 . 必应学术
    3. 杨燕子,陈华勇. 大洋富钴结壳研究进展及展望. 大地构造与成矿学. 2023(01): 80-97 . 百度学术
    4. 高晶晶,刘季花,张辉,闫仕娟,汪虹敏,崔菁菁,何连花. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源. 海洋地质与第四纪地质. 2022(03): 87-99 . 本站查看
    5. 任江波,邓义楠,赖佩欣,何高文,王汾连,姚会强,邓希光,刘永刚. 太平洋调查区多金属结核的地球化学特征和成因. 地学前缘. 2021(02): 412-425 . 百度学术
    6. 邓贤泽,任江波,邓希光,何高文,杨胜雄. 富钴结壳关键元素赋存状态与富集机理. 地质通报. 2021(Z1): 376-384 . 百度学术
    7. 侯晓帆,王珍岩,李文建,刘凯,王青. 西太平洋卡罗琳洋脊CM4海山铁锰结壳矿物学和地球化学特征. 海洋与湖沼. 2020(05): 1118-1126 . 百度学术
    8. 任江波,邓希光,邓义楠,何高文,王汾连,姚会强. 中国富钴结壳合同区海水的稀土元素特征及其意义. 地球科学. 2019(10): 3529-3540 . 百度学术
    9. 任江波,何高文,朱克超,邓希光,刘纪勇,傅飘儿,姚会强,杨胜雄,孙卫东. 富稀土磷酸盐及其在深海成矿作用中的贡献. 地质学报. 2017(06): 1312-1325 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  2335
  • HTML全文浏览量:  240
  • PDF下载量:  23
  • 被引次数: 12
出版历程
  • 收稿日期:  2010-12-10
  • 修回日期:  2011-01-18

目录

    /

    返回文章
    返回