超大陆旋回与全球板块重建趋势

李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛

李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛. 超大陆旋回与全球板块重建趋势[J]. 海洋地质与第四纪地质, 2015, 35(1): 51-60. DOI: 10.3724/SP.J.1140.2015.01051
引用本文: 李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛. 超大陆旋回与全球板块重建趋势[J]. 海洋地质与第四纪地质, 2015, 35(1): 51-60. DOI: 10.3724/SP.J.1140.2015.01051
LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. PERSPECTIVES OF SUPERCONTINENT CYCLE AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 51-60. DOI: 10.3724/SP.J.1140.2015.01051
Citation: LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. PERSPECTIVES OF SUPERCONTINENT CYCLE AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 51-60. DOI: 10.3724/SP.J.1140.2015.01051

超大陆旋回与全球板块重建趋势

基金项目: 

国家杰出青年基金(41325009)

国家自然科学基金重大项目(41190072,41190070)

详细信息
    作者简介:

    李三忠(1968-),博士,教授,主要从事构造地质学及海洋地质学的教学和研究工作,E-mail:sanzhong@ouc.edu.cn

  • 中图分类号: P736.1

PERSPECTIVES OF SUPERCONTINENT CYCLE AND GLOBAL PLATE RECONSTRUCTION

  • 摘要: 当前Columbia、Rodinia和Pangea 3个超级大陆的重建虽然有很多研究进展,其结构和轮廓逐渐清晰和明朗,但在超大陆旋回和机制上还存在巨大争论。迄今,全球板块重建趋势是:随着大板块位置基本得到约束,使得原来未被重视的小微地体群或超级地体(superterrane)的重建得到高度重视,且重建模型的精细化和区域化依然是各学科研究的热点和前沿领域。另外,在太古代早期31亿年左右可能存在最早的超大陆Vaalbara,太古代末期27~25亿年左右也可能存在一个Kenorland超大陆,但迄今证据模糊,依据不足,轮廓不清;未来2.5亿年后的Amasia超大陆预测模型也得到快速发展;超大陆旋回确定、超大陆中心预测和超大陆旋回的动力机制等也引起了广泛重视,是板块构造理论发展中的重大成果之一。近10年来,板块重建越来越深入,称为发展板块构造理论的突破点,且逐渐显露出一些新的研究领域和学科生长点,例如开始了古环流、古气候、古泥沙输运、古流体运聚的数值模拟,从单一层圈块体位置变迁和构造运动重建走向多圈层地质-地球物理-地球化学过程耦合和循环的重建。这些新趋势都依赖计算机软硬件技术的发展,硬件方面计算性能的提升,各种高性能工作站、超级计算机和超算技术等缩短了模拟重建的时间;软件方面,GIS等发展使得各种全球数据库技术发展迅速,高度集成,大数据时代催生了新一代板块重建成果,板块重建技术也愈来愈先进,从三维逐渐走向四维,从几个静态场景重建走向动态连续演化重建,从大板块重建逐渐精细化,现今主要侧重在小微陆块的集结过程的重建,也开始注意到已经消失殆尽的古大洋内部海山、高原和洋内俯冲细节的重建。我国在板块重建领域跟踪成果多,创新开拓性成果较少,较为亮点的是:1978年李春昱为首的群体重建了欧亚板块格局演变,2002年ZHAO Guochun在国际上首次提出Columbia超大陆图像,陈旭院士群体2009年出版了基于古气候的全球板块重建。但随着新一代科技革命,中国多学科交叉太弱,创新性不强,无长期支持体制机制支持一个团队在一个方向长久发展,在急功近利的项目驱动下,板块重建再度处于跟踪国际重建技术的状态。建议在大数据时代建立"地球系统模拟与板块重建"的板块重建协同创新中心,挖掘中国在国际地学研究中的潜力。
    Abstract: The recent efforts made to the reconstruction of supercontinents of Columbia, Rodinnia and Pangea have achieved great progress though there remain debates on the cycle and mechanism of the supercontinent. As the positions of large plates are basically fixed, some previously ignored micro-terranes or superterranes have attracted attention from the researchers. Fine reconstruction is still a hot spot or frontier of various research programs. In addition, the 3.1 Ga old Vaalbara supercraton and a 2.7~2.5 Ga old Kenorland supercontinent are proposed though there is lack of enough evidence and their outlines are vague for the time being. The Amasia supercontinent after 250 Ma in the future is under discussion and some predictive models have been proposed. Questions, such as the supercontinent cycle, supercontinent center, supercontinent dynamic mechanisms have also attracted interests from scholars. During the past 10 years, more in-depth plate reconstruction has brought about the breakthroughs in the development of plate tectonics theory and become the growing points of new disciplines, for examples, the reconstruction of paleo-circulation, paleoclimate, paleosystem of sediment transportation, the numerical simulation of the paleoflow system, and the reconstruction from a single-sphere changes in block positions and tectonic movement towards a multisphere reconstruction of geological-geophysical-geochemical cyclicity and coupling processes. These new trends owe their origin to the application and development of the technology of computer hardware and software, as well as the improvement of computing methods. A variety of high-function workstations, supercomputers and supercomputing technology shortens the reconstruction time. As the development of software, GIS and others have made great contributions to the rapid development of global database results. More and more advanced technology has been adopted, such as the technology to extend 3D to 4D, to change the individual static scenerios to continuous dynamic evolution, and to extend large plates to small microterranes. Instead of the reconstruction of supercontinent based on the assembling of micro-continental blocks, detailed reconstruction of oceanic seamounts, plateaus and intra-oceanic subduction zones inside the disappeared paleoceans has become the focus of supercontinent reconstruction. In China, the reaearch of supercontinent reconstruction has gaiend great achievements in the past years. The group led by Li Chunyu reconstructed configuration and reestablished the assembly processes of the Eurasian Plate in 1978, ZHAO Guochun et al. are the first who proposed the configuration of Columbian supercontinent in 2002, and CHEN Xu devoted to the supercontinent reconstruction based on global paleoclimatic data in 2009. However, multidisciplinary coorperation in China remains too weak to catch up the development abroad. We need more innovation and long-term institutional support for the endeavor. In this regard, we suggest that a collaborative innovation center on "Earth system modeling and plate reconstruction" be established to speed up the work of paleo-supercontinent reconstruction in China.
  • [1]

    Nance R D, Worsley T R, Moody J B. The supercontinent cycle[J]. Scientific American, 1988, 259(1):72-79.

    [2]

    Condie K C. Earth as an evolving planetary system (second edition)[A]. Acadmic Press, the Netherlands, 2011.

    [3]

    Gurnis M. Large-scale mantle convection and the aggregation and dispersal of supercontinents[J]. Nature, 1988, 332(6166):695-699.

    [4]

    Murphy J B, Nance R D. Supercontinents and the origin of mountain belts[J]. Scientific American, 1992, 266(4):84-91.

    [5]

    Piper J D A. A planetary perspective on Earth evolution:Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013a, 589:44-56.

    [6]

    Piper J D A. Continental velocity through geological time:the link to magmatism, crustal accretion and episodes of global cooling[J]. Geoscience Frontiers, 2013b, 4:7-36.

    [7]

    Smith K.Supercontinent Amasia to take North Pole Position[N]. Nature News,2012, 2(8).

    [8]

    Shirey S B, Richardson S H. Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle[J]. Science, 2011, 333(6041):434-436.

    [9]

    Zhong SJ, Zhang N, Li Z X, et al.Supercontinent cycles, true polar wander, and very long-wavelength mantle convection[J]. Earth And Planetary Science Letters, 2007, 261(3-4):551-564.

    [10]

    Mitchell R N, Kilian T M, Evans D A D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time[J]. Nature, 2012, 482:208-212.

    [11]

    Davis E E, Lister C R B. Fundamentals of Ridge Crest Topography[J]. Earth and Planetary Science Letters, 1974, 21:405-413.

    [12]

    Nance R D, Murphy J B, Santosh M. The supercontinent cycle:A retrospective essay[J]. Gondwana Research, 2014, 25:4-29.

    [13]

    Worsley T R, Nance R D, Moody J B. Plate tectonic episodicity:a deterministic model for periodic "Pangeas"[J]. Eos, Transactions of the American Geophysical Union, 1982, 65(45):1104.

    [14]

    Worsley T R, Nance R D, Moody J B. Global tectonics and eustasy for the past 2 billion years[J]. Marine Geology, 1984, 58:373-400.

    [15] 王鸿祯. 地球的节律与大陆动力学的思考[J]. 地学前缘, 1997, 4(3-4):1

    -12.[WANG Hongzhen. Speculations on Earth's rhythms and continental dynamics[J]. Earth Science Frontiers, 1997, 4(3-4):1-12.]

    [16] 彭元桥, 殷鸿福. 古-中生代之交的全球变化与生物效应[J]. 地学前缘, 2002, 9(3):85-93.

    [PENG Yuanqi, YIN, Hongfu, The global changes and bio-effects across the Paleozoic-Mesozoic transition. Earth Science Frontiers, 2002, 9(3):85-93.]

    [17] 邓晋福, 莫宣学, 赵海玲, 等. 壳幔物质与深部过程[J]. 地学前缘,1998, 5(3):67-74.

    [DENG Jinfu,MO Xuanxue, ZHAO Hailing,et al. Crust-mantle materials and deep processes[J]. Earth Science Frontiers, 1998, 5(3):67-74.]

    [18] 莫宣学. 蛇绿岩:壳-幔过程的地质记录[C].国家自然科学基金委员会地球科学部等主办, 1996, 4.[MO Xuanxue. Ophiolite:geological records of crust-mantle interaction[C].Earth Science Department of NSFC, 1996, 4.]
    [19] 张本仁. 区域成矿作用的化学分析:壳幔系统与地质作用的成矿机制[C]//中国矿物岩石地球化学学会第十届学术年会论文集. 2005.[ZHANG Benren. Chemical analysis of regional mineralization:mineralization of geological processes and crust-mantle system[C]//The tenth annual cofenrence of Mineralogy, Petrology and Geochemistry of China. 2005.]
    [20] 马宗晋. 地球构造变动的韵律性非对称性和地震[C]//中国地震学会第二届代表大会暨学术年会论文摘要编绘.1984.[MA Zongjun. Rhythmic asytemetry and earthquake of tectonic variation on Earth[C]//Abstracts of the second annual conference and representative meeting of Seismological Society of China. 2005.]
    [21] 韩延本. 中国古代中心日食记载与地球自转速率的变化[J]. 地球物理学报,1999, S1:18-23.[HAN Yanben. Records of ancient central solar eclipses in China and variation of the Earth's rotation[J]. Chinese Journal of Geophysics, 1999

    , S1:18-23.]

    [22]

    Worsley T R, Kidder D L. First-order coupling of paleogeography and CO2, with global surface temperature and its latitudinal contrast[J]. Geology, 1991, 19:1161-1164.

    [23] 曾融生. 大陆岩石圈构造与地球动力学[J].地球科学进展, 1991(2):1-10.[ZENG Rongsheng. The problems of lithospheric structure and geodynamics[J]. Advance of Earth Science, 1991

    (2):1-10.]

    [24] 孙枢. 中国沉积学的今后发展:若干思考与建议[J]. 地学前缘, 2005,12(2):3-10.

    [SUN Shu. Sedimentary in China:Perspectives and suggestions[J]. Earth Science Frontiers, 2005, 12(2):3-10.]

    [25] 涂光炽.两种成矿作用[C]//中国实用矿山地质学(上册).2010:3.[TU Guangzhi. Two kinds of mineralizations[C]//Applied Ore Deposit Geology. Volume one. 2010:3.]
    [26]

    Bradley D C. Secular trends in the geologic record and the supercontinent cycle[J]. Earth-Science Reviews, 2011, 108:16-33.

    [27]

    McMenamin M A S, McMenamin D L. The emergence of animals:the Cambrian breakthough[M]. Columbia University Press, 1990,0-231-06647-3.

    [28]

    Donnadieu, Y, Odd ris Y, Ramstein G, et al. A "snowball Earth" climate triggered by continental break-up through changes in runoff. Nature, 2004, 428(6980):303-306.

    [29]

    Goldfarb R J, Bradley D, Leach D L. Secular variation in economic geology[J]. Economic Geology, 2010, 105:459-465.

    [30]

    Groves D I, Vielreicher R M, Goldfarb R J,et al. Controls on the heterogeneous distribution of mineral deposits through time[C]. Geological Society of Longdon, Special Publication, 2005, 248:71-101.

    [31] 李江海,姜洪福. 全球古板块再造、岩相古地理及古环境图集[M]. 北京:地质出版社,2013.[LI Jianghai,JIANG Hongfu. Atals of Global Paleo-plate Reconstruction, Lithofacies, Paleoeography and Paleo-environment[M]. Beijing:Geological Publishing House, 2013.
    [32] 李春昱. 试谈板块构造[J].西北地质科技情报, 1973, 1(增刊):1-26.[LI Chunyu. Discussion on plate tectonics[J].Northwest Information of Geoscience and Technology, 1973

    , 1(Supp.):1-26.]

    [33] 李春昱. 对亚洲地质构造发展的新认识[C]//黄汲清、李春昱主编.中国及其邻区大地构造论文集. 北京:地质出版社, 1981:1-21.[LI Chunyu. New idea on Asian tectonics[C]//Huang J Q, Li C Y. (eds), Paper collection on Tectonics of China and its neiborings.Beijing:Geological Publishing House. 1981:1

    -21.]

    [34]

    Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 ga orogens:implications for a Pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59:125-162.

计量
  • 文章访问数:  2522
  • HTML全文浏览量:  387
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-19
  • 修回日期:  2014-11-25

目录

    /

    返回文章
    返回