留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部晚第四纪颗石藻生产力变化及其影响因素

贺娟 李丽 王慧 赵美训

贺娟, 李丽, 王慧, 赵美训. 南海北部晚第四纪颗石藻生产力变化及其影响因素[J]. 海洋地质与第四纪地质, 2012, 32(4): 9-16. doi: 10.3724/SP.J.1140.2012.04009
引用本文: 贺娟, 李丽, 王慧, 赵美训. 南海北部晚第四纪颗石藻生产力变化及其影响因素[J]. 海洋地质与第四纪地质, 2012, 32(4): 9-16. doi: 10.3724/SP.J.1140.2012.04009
HE Juan, LI Li, WANG Hui, ZHAO Meixun. LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 9-16. doi: 10.3724/SP.J.1140.2012.04009
Citation: HE Juan, LI Li, WANG Hui, ZHAO Meixun. LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 9-16. doi: 10.3724/SP.J.1140.2012.04009

南海北部晚第四纪颗石藻生产力变化及其影响因素


doi: 10.3724/SP.J.1140.2012.04009
详细信息
    作者简介:

    贺娟(1980-),女,讲师,从事海洋生物有机地球化学研究。E-mail:hj08@tongji.edu.cn

  • 基金项目:

    上海市科研创新项目(12ZZ031)

    国家自然科学基金项目(40906026,40976022)

  • 中图分类号: P736.22

LATE QUATERNARY COCCOLITH PRODUCTIVITY IN THE NORTHERN SOUTH CHINA SEA

More Information
  • 摘要: 通过对南海北部MD05-2904岩心进行有机地球化学分析,以长链不饱和烯酮作为颗石藻生产力的替代性指标,讨论颗石藻生产力的变化及其影响因素。结果显示,260 ka以来,颗石藻生产力有着明显的冰期/间冰期变化:冰期高,间冰期低;冰阶高,间冰阶低;在轨道尺度上岁差周期明显,反映出太阳辐射、东亚季风对颗石藻生产力在长期尺度上起调控作用;而由于特殊的地理位置,河流输送的营养盐对本区海洋初级生产力的影响可能也较大;与前人研究结果一致,同时认为,在地质历史上沉积速率变化大的区域,对生物标记物的含量和堆积速率的对比讨论,更有利于反映生产力的变化。
  • [1] Eglinton T I, Conte M H, Eglinton G, et al. Proceeding of a workshop on alkenone-based paleoceanographic indicators[J]. Geochemistry, Geophysics, Geosystem, 2001, 2:2000GC000122.
    [2] Weaver P P E, Chapman M R, Eglinton G, et al. Combined coccolith, foraminiferal, and biomarker reconstruction of paleoceanographic conditions over the last 120 kyr in the northern North Atlantic (591, 231W)[J]. Paleoceanography, 1999, 14:336-349.
    [3] Rostek F, Bard E, Beaufort L, et al. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea[J]. Deep-Sea Research Ⅱ, 1997, 44:1461-1480.
    [4] Villanueva J, Grimalt J O, Labeyrie L D, et al. Precessional forcing of productivity in the North Atlantic Ocean[J]. Paleoceanography, 1998, 13:561-571.
    [5] Calvo E, Pelejero C, Logan G A, et al. Dustinduced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles[J]. Paleoceanography, 2004, 19, PA2020, doi:10. 1029/2003PA000992.
    [6] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19, PA1016, doi:10.1029/2002PA000808.
    [7] Jasper J P, Hayes J M, Mix A C, et al. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255, 000 years[J]. Paleoceanography, 1994, 9:781-798.
    [8] Kohfeld K E, Le Quere C, Harrison S P, et al. Role of marine biology in glacial-interglacial CO2 cycles[J]. Science, 2005, 308:74-78.
    [9] Rostek F, Ruhland G, Bassinot F C, et al. Reconstructing sea surface temperature and salinity using δ18O and alkenone records[J]. Nature, 1993, 364:319-321.
    [10] Englebrecht A C, Sachs J P. Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones[J]. Geochim. Cosmochim. Acta, 2005, 69:4253-4265.
    [11] Wang P, Li Q. Biogeochemistry and the Carbon Reservoir. The South China Sea[M]. Springer, 2009:25-73.
    [12] Jian Z M, Wang L J, Kienast M. Late Quaternary surface paleoproductivity and variations of the East Asian Monsoon in the South China Sea[J]. Quaternary Sciences, 1999, 1:32-40.
    [13] Kuhnt W, Hess S, Jian Z. Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea[J]. Marine Geology, 1999, 156:123-157.
    [14] Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J]. Science, 2001, 293:2440-2444.
    [15] Lin H L, Lai C T, Ting H C, et al. Late Pleistocene nutrients and sea surface productivity in the South China Sea:a record of teleconnections with Northern hemisphere events[J]. Marine Geology, 1999, 156:197-210.
    [16] Chen M-T, Shiau L-J, Yu P-S, et al. 500000-Year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197:113-131.
    [17] Zhao M, Wang P, Tian J, et al. Biogeochemistry and the Carbon Reservoir. The South China Sea[M]. Springer, 2009:439-483.
    [18] Laj C, Wang P X, Balut Y, et al. MD147-Marco Polo IMAGESⅫ Cruise Report. France:Institut Paul-Emile Victor (IPEV), 2005.
    [19] 葛黄敏, 李前裕, 成鑫荣, 等. 南海北部晚第四纪高分辨率浮游氧同位素地层学及其古气候信息[J]. 地球科学, 2010, 35(4):515-525.

    [GE Huangmin, LI Qianyu, CHENG Xinrong, et al. Late Quaternary high resolution monsoon records in planktonic stable isotopes from Northern South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4):515-525.]
    [20] Lisiecki L E, Raymo E M. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18Orecords[J]. Paleoceanography, 2005, 20, PA1003, doi:10. 1029/2004PA001071.
    [21] North Greenland Ice Core Project (NGRIP) Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431:147-151.
    [22] He Juan, Zhao Meixun, LI Li, et al. Sea surface temperature and terrestrial biomarker records of the last 260 ka of core MD05-2904 from the northern South China Sea[J]. Chinese Science Bulletin, 2008, 53(15):2376-2384.
    [23] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156:245-284.
    [24] Chen M, Shiau L, Yu P, et al. 500000~year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Paleogeography Paleoclimatology Paleoecology, 2003, 197:113-131.
    [25] 黄维, 汪品先. 南海沉积物总量的统计:方法与结果[J]. 地球科学进展, 2006, 21(5):465-473.

    [HUANG Wei, WANG Pinxian. The statistics of sediment mass in the South China Sea:method and result[J]. Advances in Earth Science, 2006, 21(5):465-473.]
    [26] Paillard D, Labeyrie L, Yiou P. Macintosh program performs time-series analysis[J]. Eos Transactions American Geophysical Union, 1996, 77(39):379, doi:10. 1029/96EO00259.
    [27] Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on Oceanic Primary Production during the late Pleistocene[J]. Science, 2001, 293:2440-2444.
    [28] Huang C Y, Wu S, Zhao M, et al. Surface ocean and monsoon climate variability in the South China Sea since the last glaciation[J]. Marine Micropaleontology, 1997, 32:71-94.
    [29] Chen Y-Y, Chen M-T, Fang T-S. Biogenic sedimentation patterns in the Northern South China Sea:An ultrahigh-resolution record MD972148 of the past 150,000 years from the IMAGES Ⅲ-IPHIS Cruise[J]. Terrestrial Atmospheric and Oceanic Sciences, 1999, 10(1):215-224.
    [30] Chen J, Zheng L, Wiesner M G, et al. Estimations of primary production and export production in the South China Sea based on sediment trap experiments[J]. Chinese Science Bulletin, 1998, 43(7):583-586.
    [31] Higginson M J, Maxwell J R, et al. Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea:remote vs. local forcing of millennia-and orbital-scale variability[J]. Marine Geology, 2003, 201:223-250.
    [32] Chen Y. L. Spatial and seasonal variations of nitrate based new production and primary production in the South China Sea[J]. Deep-Sea Research Ⅰ, 2005, 52:319-340.
    [33] Kienast M, Calvert S E, Pelejero C, et al. A critical review of marine sedimentary 13Corg-pCO2 estimates:New palaeorecords form the South China Sea and a revisit of other low-latitude 13Corg-pCO2 records[J]. Global Biogeochemistry Cycles, 2001, 15:113-127.
    [34] Pelejero C, Grimalt J O, Sarnthein M, et al. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140000 years[J]. Marine Geology, 1999, 156:109-201.
    [35] Zhao M X, Huang C Y, Wang C C, et al. A millennial-scale UK37 sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr:Monsoon and sea-level influence[J]. Palaeogeography, Palwoclimatology, Palaeoecology, 2006, 236:39-55.
    [36] Shiau L J, Yu P S, Wei K Y, et al. Sea surface temperature, productivity, and terrestrial flux variations of the southeastern South China Sea over the past 800000 years (IMAGES D972142)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19, 363-376.
    [37] Ruddiman W F. Earth's Climate:Past and Future[M]. Freeman & Co., N Y. 2001, 1-465.
    [38] Villanueva J, Grimalt J O, Labeyrie L D, et al. Precessional forcing of productivity in the North Atlantic Ocean[J]. Paleoceanography, 1998, 13(6):561-571.
    [39] Ivanova E V, Beaufort L, Vidal L, et al. Precession forcing of productivity in the Eastern Equatorial Pacific during the last glacial cycle[J]. Quaternary Science Reviews, 2012, 40:64-77.
    [40] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochem Cycles, 1991, 5:193-259.
    [41] Liu K K, Chao S Y, Shaw P T, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea:observations and a numerical study[J]. Deep-Sea Research Part I, 2002, 49:1387-1412.
    [42] Chen Y L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea[J]. Deep-Sea Research PartⅠ, 2005, 52:319-340.
    [43] Pelejero C. Terrigenous n-alkane input in the South China Sea:high resolution records and surface sediments[J]. Chemical Geology, 2003, 200:89-103.
    [44] Lea D W, Martin P A, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotopic records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1-3):283-293.
    [45] Rostek F, Bard E, Beaufort L, et al. Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Research Ⅱ, 1997, 44:1461-1480.
    [46] Rickaby R E M, Bard E, Sonzogni C, et al. Coccolith chemistry reveals secular variations in the global ocean carbon cycle?[J] Earth and Planetary Science Letters, 2007, 253:83-95.
    [47] Fujine K, Tada R, Yamamoto M. Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280:350-360.
    [48] Conte M H, Thompson A, Lesley D, et al. Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica[J]. Geochimica et Cosmochimica Acta, 1998, 62:51-68.
  • [1] 石天宇, 张样洋, 翟秋敏, 李洪彬, 刘畅, 周学文, 陈鹏, 陈亮.  临汾盆地晚冰期至中全新世黄土-古土壤序列的风化特征及指示的气候意义 . 海洋地质与第四纪地质, 2023, 43(2): 181-191. doi: 10.16562/j.cnki.0256-1492.2022070501
    [2] 陈芬, 黎刚, 朱小畏, 颜文.  南海南沙海区沉积有机质分布特征及其指示意义 . 海洋地质与第四纪地质, 2023, 43(2): 45-54. doi: 10.16562/j.cnki.0256-1492.2022072601
    [3] 邹家麒, 丁旋.  西北孟加拉湾中更新世早期的硅质生物生产力变化 . 海洋地质与第四纪地质, 2022, 42(5): 83-93. doi: 10.16562/j.cnki.0256-1492.2022070301
    [4] 区相文, 邬黛黛, 谢瑞, 吴能友, 刘丽华.  南海北部神狐海域沉积物Fe-P-S元素地球化学特征及对甲烷渗漏的指示 . 海洋地质与第四纪地质, 2022, 42(1): 96-110. doi: 10.16562/j.cnki.0256-1492.2021080501
    [5] 徐博, 曾文倩, 刁慧, 汤睿, 欧戈.  东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义 . 海洋地质与第四纪地质, 2021, 41(3): 72-84. doi: 10.16562/j.cnki.0256-1492.2020082402
    [6] 计超, 徐利强, 张一辉, 郭敏, 孔德明.  南海琼东上升流区过去1 900年海洋生产力记录 . 海洋地质与第四纪地质, 2020, 40(5): 97-106. doi: 10.16562/j.cnki.0256-1492.2019092502
    [7] 刘磊, 管红香, 冯俊熙, 许兰芳, 茅晟懿, 刘丽华.  南海北部31 ka以来GDGTs组成及其对古温度和季风变化的响应 . 海洋地质与第四纪地质, 2020, 40(3): 144-159. doi: 10.16562/j.cnki.0256-1492.2020021101
    [8] 赵强, 李西双, 吴永华, 刘建兴.  岁差驱动与中国黄土高原的次级气候旋回 . 海洋地质与第四纪地质, 2020, 40(1): 136-159. doi: 10.16562/j.cnki.0256-1492.2018110501
    [9] 赵强, 许红.  西沙石岛末次冰期风成沉积序列新划分及其旋回特征 . 海洋地质与第四纪地质, 2018, 38(6): 56-68. doi: 10.16562/j.cnki.0256-1492.2018.06.006
    [10] 潘梦迪, 邬黛黛, 吴能友, 刘丽华.  南海北部神狐海域晚末次冰期以来有孔虫特征及其对古海洋环境的指示 . 海洋地质与第四纪地质, 2017, 37(2): 127-138. doi: 10.16562/j.cnki.0256-1492.2017.02.013
    [11] 吴聪, 陈炽新, 陈芳, 周洋.  南海北部陆坡SH1B孔MIS 6期以来古生产力和古环境变化的硅藻记录 . 海洋地质与第四纪地质, 2015, 35(5): 95-102. doi: 10.16562/j.cnki.0256-1492.2015.05.011
    [12] 郝鹏, 李铁刚, 常凤鸣, 南青云, 熊志方, 秦秉斌, 郑旭锋.  末次盛冰期以来南海西南海区对快速气候变化的响应特征 . 海洋地质与第四纪地质, 2014, 34(4): 83-91. doi: 10.3724/SP.J.1140.2014.04083
    [13] 王小华, 陈荣华, 赵庆英, 陈建芳, 冉莉华, Wiesner M G.  2009-2010年南海北部浮游有孔虫通量和稳定同位素季节变化及其对东亚季风的响应 . 海洋地质与第四纪地质, 2014, 34(1): 103-115. doi: 10.3724/SP.J.1140.2014.01103
    [14] 杨睿, 张媛, 雷新华, 苏正, 梁金强, 沙志彬.  南海北部天然气水合物赋存带识别与深度预测 . 海洋地质与第四纪地质, 2011, 31(4): 141-147. doi: 10.3724/SP.J.1140.2011.04141
    [15] 袁圣强, 吴时国, 赵宗举, 徐方建.  南海北部陆坡深水区沉积物输送模式探讨 . 海洋地质与第四纪地质, 2010, 30(4): 39-48. doi: 10.3724/SP.J.1140.2010.04039
    [16] 刘杰, 李丽, 贺娟.  南海海域浮游植物分布特征及研究进展 . 海洋地质与第四纪地质, 2010, 30(3): 133-142. doi: 10.3724/SP.J.1140.2010.03133
    [17] 刘焱光, 邹建军, 李朝新, 张伟滨, 石学法, Suk Bong-Chool.  日本海的末次盛冰期 . 海洋地质与第四纪地质, 2009, 29(4): 53-63. doi: 10.3724/SP.J.1140.2009.04053
    [18] 叶芳, 刘志飞, 拓守廷, 翦知湣.  南海北部中更新世0.78~1.0 Ma期间的陆源碎屑粒度记录 . 海洋地质与第四纪地质, 2007, 27(2): 77-83.
    [19] 吴国瑄, 王汝建, 郝沪军, 邵磊.  南海北部海相中生界发育的微体化石证据 . 海洋地质与第四纪地质, 2007, 27(1): 79-85.
    [20] 任晓辉, 陈仕涛, 明艳芳, 汪永进.  倒数第二次冰期晚期东亚季风气候演变的石笋δ18O记录 . 海洋地质与第四纪地质, 2007, 27(1): 47-52.
  • 加载中
计量
  • 文章访问数:  1836
  • HTML全文浏览量:  191
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-06
  • 修回日期:  2012-07-17

南海北部晚第四纪颗石藻生产力变化及其影响因素

doi: 10.3724/SP.J.1140.2012.04009
    作者简介:

    贺娟(1980-),女,讲师,从事海洋生物有机地球化学研究。E-mail:hj08@tongji.edu.cn

基金项目:

上海市科研创新项目(12ZZ031)

国家自然科学基金项目(40906026,40976022)

  • 中图分类号: P736.22

摘要: 通过对南海北部MD05-2904岩心进行有机地球化学分析,以长链不饱和烯酮作为颗石藻生产力的替代性指标,讨论颗石藻生产力的变化及其影响因素。结果显示,260 ka以来,颗石藻生产力有着明显的冰期/间冰期变化:冰期高,间冰期低;冰阶高,间冰阶低;在轨道尺度上岁差周期明显,反映出太阳辐射、东亚季风对颗石藻生产力在长期尺度上起调控作用;而由于特殊的地理位置,河流输送的营养盐对本区海洋初级生产力的影响可能也较大;与前人研究结果一致,同时认为,在地质历史上沉积速率变化大的区域,对生物标记物的含量和堆积速率的对比讨论,更有利于反映生产力的变化。

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回