留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅水岸滩蚀积过程原位监测方法研究现状

夏欣 贾永刚 杨秀娟

夏欣, 贾永刚, 杨秀娟. 浅水岸滩蚀积过程原位监测方法研究现状[J]. 海洋地质与第四纪地质, 2009, 29(6): 137-144. doi: 10.3724/SP.J.1140.2009.06137
引用本文: 夏欣, 贾永刚, 杨秀娟. 浅水岸滩蚀积过程原位监测方法研究现状[J]. 海洋地质与第四纪地质, 2009, 29(6): 137-144. doi: 10.3724/SP.J.1140.2009.06137
XIA Xin, JIA Yonggang, YANG Xiujuan. METHODS FOR MONITORING IN-SITU EROSION AND DEPOSITION IN SHALLOW WATER AND TIDAL FLAT AREA[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 137-144. doi: 10.3724/SP.J.1140.2009.06137
Citation: XIA Xin, JIA Yonggang, YANG Xiujuan. METHODS FOR MONITORING IN-SITU EROSION AND DEPOSITION IN SHALLOW WATER AND TIDAL FLAT AREA[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 137-144. doi: 10.3724/SP.J.1140.2009.06137

浅水岸滩蚀积过程原位监测方法研究现状


doi: 10.3724/SP.J.1140.2009.06137
详细信息
    作者简介:

    夏欣(1975-),女,博士,讲师,主要从事环境监测智能仪器开发,E-mail:mail_xia@sohu.com

  • 基金项目:

    国家高技术研究发展计划项目(2008AA09Z109)

  • 中图分类号: P716

METHODS FOR MONITORING IN-SITU EROSION AND DEPOSITION IN SHALLOW WATER AND TIDAL FLAT AREA

More Information
  • 摘要: 系统介绍了具有短时间范围浅水岸滩蚀积过程动态原位监测方法,这些方法监测时段为几天至几年时间尺度。按照时间分辨率大小,这些监测方法可分为非连续监测和半连续监测;按照工作原理,可分为测试沉积量和测试沉积物-水界面高程变化两种类型。在分别介绍各种监测方法功能特点的基础上,进一步分析了各方法的优缺点,指出了今后的发展方向,对相关研究具有很好的参考价值。
  • [1] Lawlar D M.A new technique for the automatic monitoring of erosion and deposition rates[J].Water Resources Research,1991,27(8):2125-2128.
    [2] Verlaan P A J,Spanhoff R.Massive sedimentation events at the mouth of the Rotterdam waterway[J].Journal of Coastal Research,2000,16(2):458-469.
    [3] 吴华林,沈焕庭,朱建荣.河口泥沙通量研究综述[J].泥沙通量,2001,5:73-79.[WU Hualin,SHEN Huanting,ZHU Jianrong.Estuarine sediment fluxes:An overview[J].Journal of Sediment Research,2001

    ,5:73-79.]
    [4] Black K S,Tolhurst T J,Paterson D M,et al.Working with natural cohesive sediments[J].Journal of Hydraulic Engineering,2002,128(1):2-8.
    [5] Alvisi,Albertazzi S,Frignani M,et al.Sampling and dating strategies in studying environments with high spatial and temporal variability[J].Arch.Oceanogr.Limnol.,2001,22:207-216.
    [6] Anderson F E,Black L,Watling L E,et al.A tempral and spatial study of mudflat erosion[J].Journal of Sedimentary Petrology,1981,51(3):729-736.
    [7] Ogston A S,Cacchione D A,Sternberg R W,et al.Observations of storm and river flood-driven sediment transport on the northern California continental shelf[J].Continental Shelf Research,2000,20(16):2141-2162.
    [8] 印萍,金永德,吕京福,等.北戴河海滩泥沙捕获实验及其初步结果分析[J].海岸工程,2003,22(2):67-77.

    [YIN Ping,JIN Yongfu,LÜ Jingfu,et al.Sediment trap experiment in the Beidaihe Surf Zone and its preliminary result analysis[J].Coastal Engneering,2003,22(2):67-77.]
    [9] Lamoureux S F.A sediment accumulation sensor for use in lacustrine and marine sedimentation studies[J].Geomorphology,2005,68(1-2):17-23.
    [10] Emerson C W.A method for the measurement of bedload sediment transport and passive faunal transport on intertidal sandflats[J].Estuaries,1991,14(4):361-371.
    [11] Black K,Athey S,Wilson P,et al.Particle tracking:a new tool for coastal zone sediment management[J].Littoral,2004:20-22.
    [12] Black K,Athey S,Wilson Peter,et al.The use of particle tracking in sediment transport studies:a review[J].Geological Society London Special Publications,2007,274:73-91.
    [13] Perillo G M E,Santos E P D,Piccolo M C.An inexpensive instrument for sediment erosion-accumulation rate measurement in intertidal environments[J].Wetlands Ecology and Management,2003(11):195-198.
    [14] Cahoon D R,Reed D J,Day Jr J W,et al.Estimating shallow subsidence in microtidal salt marshes of the southeastern United States[J].Mar.Geol.,1995,128:1-9.
    [15] Cahoon D R,Lynch J C,Hensel P,et al.High-precision measurements of wetland sediment elevation:I.Recent improvement to the sedimentation-erosion table[J].J.Sediment.Res.,2002,72(5):730-733.
    [16] Thomas S,Ridd P V.Review of methods to measure short time scale sediment accumulation[J].Marine Geology,2004,207:95-114.
    [17] Young R N,Southard J B.Erosion of fine-grained marine sediments:sea-floor and laboratory experiments[J].Geological Society of America Bulletin,1978,89(5):663-672.
    [18] Amos C L,Daborn G R,Christian H A,et al.In situ erosion measurements on fine-grained sediments from the Bay of Fundy[J].Marine Geology,1992,108(2):175-196.
    [19] Maa J P Y,Wright L D,Lee C H,et al.VIMS Sea Carousel:A field instrument for studying sediment transport[J].Marine Geology,1993,115(3-4):271-287.
    [20] Maa J P Y,Lee C H,Chen F J.Bed shear stress measurements for Sea Carousel[J].Marine Geology,1995,129(1-2):129-136.
    [21] Houwing E J,van Rijn L C.In Situ Erosion Flume (ISEF):determination of bed-shear stress and erosion of a kaolinite bed[J].Journal of Sea Research,1998,39(3-4):243-253.
    [22] Maa J P Y,Sanford L,Halka J P.Sediment resuspension characteristics in Baltimore Harbor,Maryland[J].Marine Geology,1998,146(1-4):137-145.
    [23] Andersen T J,Fredsoe J,Pejrup M.In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV)[J].Estuarine,Coastal and Shelf Science,2007,75(3):327-336.
    [24] Tolhurst T J,Black K S,Paterson D M,et al.A comparison and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments[J].Continental Shelf Research,2000,20(10-11):1397-1418.
    [25] Pope N D,Widdows J,Brinsley M D.Estimation of bed shear stress using the turbulent kinetic energy approach-A comparison of annular flume and field data[J].Continental Shelf Research,2006,26(8):959-970.
    [26] Widdows J,Friend P L,Bale A J,et al.Inter-comparison between five devices for determining erodability of intertidal sediments[J].Continental Shelf Research,2007,27(8):1174-1189.
    [27] Cacchione D A,Sternberg R W,Ogston A S.Bottom instrumented tripods:History,applications,and impacts[J].Continental Shelf Research,2006,26(17-18):2319-2334.
    [28] Heffler D.RALPH-A Dynamic Instrument for Sediment Dynamics[C]//OCEANS'96.MTS/IEEE.Prospects for the 21st Century.Conference Proceedings,1996,2:728-732.
    [29] Schaaff E,Grenz C,Pinazo C,et al.Field and laboratory measurements of sediment erodibility:A comparison[J].Journal of Sea Research,2006,55(1):30-42.
    [30] Ogston A S,Guerra J V,Sternberg R W.Interannual variability of nearbed sediment flux on the Eel River shelf,northern California[J].Continental Shelf Research,2004,24(1):117-136.
    [31] Wheatcroft R A,Sommerfield C K.River sediment flux and shelf sediment accumulation rates on the Pacific northwest margin[J].Continental Shelf Research,2005,25(3):311-332.
    [32] Ridd P V,Day G,Thomas S,et al.Measurement of sediment deposition rates using an optical backscatter sensor[J].Estuarine,Coastal and Shelf Science,2001,52:155-163.
    [33] Erlingsson U.A sensor for measuring erosion and deposition[J].J.Sediment.Petrol.,1991,61:620-623.
    [34] Lawler D M,West J R,Couperthwaite J S,et al.Application of a novel automatic erosion and deposition monitoring system at a channel bank site on the tidal river Trent,U.K.[J].Estuarine,Coastal and Shelf Science,2001,53:237-247.
    [35] Lawler D M,West J R,Couperthwaite J S.The importance of high-resolution monitoring in erosion and deposition dynamics studies:examples from estuarine and fluvial systems[J].Geomorphology,2005,64:1-23.
    [36] Lawler D M.Advances in the continuous monitoring of erosion and deposition dynamics:Development and applications of the new PEEP-3T system[J].Geomorphology,2008,93:17-39.
    [37] Jestin H P B,Hir P Le,L'yavanc J,et al.Development of ALTUS,a high frequency acoustic submersible recording altimeter to accurately monitor bed elevation and quantify deposition or erosion of sediments[C]//Oceans'98 Conference Proceedings.1998:189-194.
    [38] Bassoullet P,Hir P Le,Gouleau D,et al.Sediment transport over an intertidal mudflat:field investigations and estimation of fluxes within the "Baie de Marennes-Olerona" (France)[J].Continental Shelf Research,2000,20:1635-1653.
    [39] WON I J.The geometrical factor of a marine resistivity probe with four ring electrodes[J].Ieee Journal of Oceanic Engineering,1987,12(1):301-303.
    [40] Ridd P V.A sediment level sensor for erosion and siltation detection[J].Estuarine,Coastal and Shelf Science,1992,35:353-362.
    [41] Wheatcroft R A.In situ measurements of near-surface porosity in shallow-water marine sands[J].Ieee Journal of Ooceanic Engineering,2002,27(3):561-570.
  • [1] 代馨楠, 贾永刚, 张少同, 张淑玉, 张皓清, 单红仙.  盐度影响沉积物抗侵蚀性的环形水槽试验研究 . 海洋地质与第四纪地质, 2020, 40(3): 222-230. doi: 10.16562/j.cnki.0256-1492.2019032401
    [2] 田会波, 印萍, 阳凡林.  海南省万宁东部砂质海岸侵蚀特征分析 . 海洋地质与第四纪地质, 2018, 38(4): 44-55. doi: 10.16562/j.cnki.0256-1492.2018.04.004
    [3] 宋玉鹏, 孙永福, 杜星, 曹成林, 李淑玲.  波浪作用下海底粉土孔隙水压力响应过程监测研究 . 海洋地质与第四纪地质, 2018, 38(2): 208-214. doi: 10.16562/j.cnki.0256-1492.2018.02.021
    [4] 赵启, 安萍, 于禄鹏, 徐树建.  山东黄土年代学研究进展:问题与方向 . 海洋地质与第四纪地质, 2017, 37(2): 139-148. doi: 10.16562/j.cnki.0256-1492.2017.02.014
    [5] 张正一, 董冬冬, 张广旭, 张国良.  板块俯冲侵蚀雅浦岛弧的地形制约 . 海洋地质与第四纪地质, 2017, 37(1): 41-50. doi: 10.16562/j.cnki.0256-1492.2017.01.005
    [6] 季福东, 贾永刚, 刘晓磊, 郭磊, 张民生, 单红仙.  海底沉积物工程力学性质原位测量方法 . 海洋地质与第四纪地质, 2016, 36(3): 191-200. doi: 10.16562/j.cnki.0256-1492.2016.03.019
    [7] 夏欣, 贾永刚, 常方强.  海床蚀积变化电阻率原位监测系统设计与实验 . 海洋地质与第四纪地质, 2016, 36(1): 197-203. doi: 10.16562/j.cnki.0256-1492.2016.01.020
    [8] 张云吉, 宫立新, 金秉福, 董志成.  基于137Cs示踪的大沽河流域土壤侵蚀模数研究 . 海洋地质与第四纪地质, 2013, 33(6): 165-172. doi: 10.3724/SP.J.1140.2013.06165
    [9] 李广雪, 宫立新, 杨继超, 丁咚, 李兵, 曹立华, 王永红, 刘玲.  山东滨海沙滩侵蚀状态与保护对策 . 海洋地质与第四纪地质, 2013, 33(5): 35-45. doi: 10.3724/SP.J.1140.2013.05035
    [10] 毕世普, 胡刚, 何拥军, 张勇.  近20年来长江口表层悬沙分布的遥感监测 . 海洋地质与第四纪地质, 2011, 31(5): 17-24. doi: 10.3724/SP.J.1140.2011.05017
    [11] 马小川, 范奉鑫, 阎军.  海洋沉积动力过程原位监测平台及其应用 . 海洋地质与第四纪地质, 2011, 31(4): 179-185. doi: 10.3724/SP.J.1140.2011.04179
    [12] 孟祥梅, 贾永刚, 杨忠年, 刘辉, 宋敬泰, 侯伟, 郑杰文.  现代黄河三角洲潮滩沉积物抗侵蚀性原位试验 . 海洋地质与第四纪地质, 2010, 30(3): 39-45. doi: 10.3724/SP.J.1140.2010.03039
    [13] 陈道华, 吴宣志, 祝有海, 雷知生, 姜正陆, 徐著华, 赵宏宇.  一种深海沉积物孔隙水原位气密采样器 . 海洋地质与第四纪地质, 2009, 29(6): 145-148. doi: 10.3724/SP.J.1140.2009.06145
    [14] 胡刚, 刘健, 时连强, 武小勇.  长江河口岸滩侵蚀与防护 . 海洋地质与第四纪地质, 2009, 29(6): 9-15. doi: 10.3724/SP.J.1140.2009.06009
    [15] 胡日军, 吴建政, 朱龙海, 马芳.  黄骅港抛泥区泥沙运移及对航道淤积的影响 . 海洋地质与第四纪地质, 2009, 29(1): 39-46. doi: 10.3724/SP.J.1140.2009.01039
    [16] 贾耀锋, 黄春长, 庞奖励, 毛龙江, 葛本伟.  渭河流域东部全新世黄土-古土壤剖面光释光测年及其记录的土壤侵蚀事件 . 海洋地质与第四纪地质, 2008, 28(3): 73-83.
    [17] 韩晓庆, 高伟明, 褚玉娟.  河北省自然状态沙质海岸的侵蚀及预测 . 海洋地质与第四纪地质, 2008, 28(3): 23-29.
    [18] 曾海鳌, 吴敬禄, 林琳.  137Cs示踪法研究太湖流域土壤侵蚀分布与总量 . 海洋地质与第四纪地质, 2008, 28(2): 79-85.
    [19] 胡刚, 沈焕庭, 庄克琳, 周良勇, 刘健.  长江河口岸滩侵蚀演变模式 . 海洋地质与第四纪地质, 2007, 27(1): 13-21.
    [20] 周良勇, 李广雪, 刘健, 李安龙, 邓声贵, 温国义, 赵东波.  黄河三角洲潮滩剖面特征 . 海洋地质与第四纪地质, 2006, 26(2): 1-8.
  • 加载中
计量
  • 文章访问数:  208
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-10
  • 修回日期:  2009-10-15

浅水岸滩蚀积过程原位监测方法研究现状

doi: 10.3724/SP.J.1140.2009.06137
    作者简介:

    夏欣(1975-),女,博士,讲师,主要从事环境监测智能仪器开发,E-mail:mail_xia@sohu.com

基金项目:

国家高技术研究发展计划项目(2008AA09Z109)

  • 中图分类号: P716

摘要: 系统介绍了具有短时间范围浅水岸滩蚀积过程动态原位监测方法,这些方法监测时段为几天至几年时间尺度。按照时间分辨率大小,这些监测方法可分为非连续监测和半连续监测;按照工作原理,可分为测试沉积量和测试沉积物-水界面高程变化两种类型。在分别介绍各种监测方法功能特点的基础上,进一步分析了各方法的优缺点,指出了今后的发展方向,对相关研究具有很好的参考价值。

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回