北极东西伯利亚陆架表层沉积物汞的分布特征及其意义

张振虎, 姚政权, 胡利民, Anatolii Astakhov, 邹建军, 刘焱光, 王昆山, 杨刚, 陈志华, 夏逸, 李秋玲, 冯晗, 石学法

张振虎,姚政权,胡利民,等. 北极东西伯利亚陆架表层沉积物汞的分布特征及其意义[J]. 海洋地质与第四纪地质,2023,43(1): 49-60. DOI: 10.16562/j.cnki.0256-1492.2022071801
引用本文: 张振虎,姚政权,胡利民,等. 北极东西伯利亚陆架表层沉积物汞的分布特征及其意义[J]. 海洋地质与第四纪地质,2023,43(1): 49-60. DOI: 10.16562/j.cnki.0256-1492.2022071801
ZHANG Zhenhu,YAO Zhengquan,HU Limin,et al. Distribution characteristics and implications of mercury in the surface sediments of the East Siberian Arctic Shelf[J]. Marine Geology & Quaternary Geology,2023,43(1):49-60. DOI: 10.16562/j.cnki.0256-1492.2022071801
Citation: ZHANG Zhenhu,YAO Zhengquan,HU Limin,et al. Distribution characteristics and implications of mercury in the surface sediments of the East Siberian Arctic Shelf[J]. Marine Geology & Quaternary Geology,2023,43(1):49-60. DOI: 10.16562/j.cnki.0256-1492.2022071801

北极东西伯利亚陆架表层沉积物汞的分布特征及其意义

基金项目: 国家自然科学基金重点项目“末次冰消期以来北极东西伯利亚陆架对快速气候变化的响应”(42130412)
详细信息
    作者简介:

    张振虎(1998—),男,硕士研究生,从事海洋沉积与古环境研究,E-mail:zhangzhenhu98@126.com

    通讯作者:

    姚政权(1980—),男,研究员,主要从事海洋沉积与古环境、古气候研究,E-mail: yaozq@fio.org.cn

  • 中图分类号: P736.2

Distribution characteristics and implications of mercury in the surface sediments of the East Siberian Arctic Shelf

  • 摘要: 全球变暖导致北极地区冻土退化、海冰消融、河流径流增加及海洋动力发生变化,这些因素连同日益增加的人类活动都影响北冰洋中汞的输入和运移。对取自北极东西伯利亚陆架的87个表层沉积物进行了汞含量测试与分析,发现沉积物中汞含量的分布有显著的空间差异性,可分为近岸低汞区(33 ng/g)、陆架中部汞含量中等区(58 ng/g)和北部深水高汞区(84 ng/g)。总体来看,从近岸向外海,汞含量随水深的增大而升高。结合沉积物粒度、有机碳和比表面积等指标,发现东西伯利亚陆架沉积物中黏土含量与汞含量呈现正相关,显示了沉积物粒度对汞分布的控制作用。近岸由于受河流输入、海岸侵蚀和环流分选等因素的影响,沉积物粒径较粗,导致汞含量较低,而北部陆架深水区的细粒沉积物则吸附了更多的汞。在楚科奇海和拉普捷夫海,沉积汞含量和总有机碳含量有较强的正相关性,而在东西伯利亚海相关性较弱,这可能是因为东西伯利亚海的沉积有机碳来源相对更为复杂。基于沉积汞的富集因子指标,我们认为北极东西伯利亚陆架沉积汞的污染水平整体较低,受人类活动的影响相对较弱。
    Abstract: Global warming is leading to permafrost degradation, sea-ice melt, increased river runoff, and changes in ocean dynamics in the Arctic region. These factors, plus the increasing human activities, affects the input and transport of mercury in the Arctic Ocean. We analyzed the mercury content in 87 surface sediments (0~2 cm) sampled in the East Siberian Arctic Shelf in the Chukchi Sea, East Siberian Sea, and Laptev Sea during three Sino-Russian Arctic joint expeditions in 2016, 2018, and 2020 at water depth of 9~2546 m. Results show a significant spatial variability in mercury concentration, which can be divided into the nearshore low-mercury zones (33 ng/g), the middle shelf medium-mercury zone (58 ng/g), and the northern deep water high-mercury zone (84 ng/g). In general, the mercury concentration tended to increase with water depth increasing from nearshore toward offshore. Analyses of sediment grain size, total organic carbon, and specific surface area of sediments show that the mercury concentration was positively correlated with the clay content in the surface sediments, indicating the controlling role of sediment grain size in the distribution of mercury. The coarse sediments in the nearshore showed lower mercury concentration due to the influence of river input, coastal erosion, and hydrodynamic sorting, while the fine-grained sediments in the northern shelf are prone to absorb more mercury. There was a strong positive correlation between mercury and total organic carbon in the Chukchi and Laptev Seas, while the correlation was weaker in the East Siberian Sea due probably to more-complexed source of total organic carbon. The enrichment factor of mercury manifests that the overall level of contamination of sedimentary mercury is low at present in the East Siberian Arctic Shelf area, showing relatively weak influence of human activities.
  • 21世纪是海洋的世纪,建设海洋工程、发展海洋经济、开展海洋研究是推动强国战略的重要内容。目前,我国海洋事业正逐步向深远海迈进,在资源开发、工程建设和捍卫海洋主权等方面已取得一定成果[1-3]。海底稳定性是海洋开发建设的重要制约因素,海底地质稳定性差,制约程度高,开发风险高;海底地质稳定性好,制约程度低,开发风险低[4]。如何准确对深远海海底稳定性进行评价是开展深远海开发利用的重点工作之一,由于影响海底稳定性的因素具有复杂性和不确定性,因此,评价结果并不具有绝对含义[5]

    目前,涉及海底稳定性的研究成果多集中于近海且常以单一地貌为研究对象,缺少对深远海海底稳定性的宏观性评价。国外学者侧重于海底边坡、斜坡等单一地貌,常采用概率、数值模拟、半解析等数学方法进行分析[6-7],对黑海高加索大陆架[8]、高纬度冰期斯瓦尔巴-巴伦支海[9]等区域的海底斜坡稳定性进行了研究,探索了地震和沉积速率对海底斜坡稳定性的影响[10],海底沉积斜坡和增生楔的稳定性[11]等问题,成果大多只聚焦于目标区的稳定性分析,缺乏定量化的分区评价。我国学者除对海底斜坡进行了大量研究外[12],近年来以地貌类型、地形坡度、地震数据、工程地质参数等因素作为主要评价因子,利用GIS、层次分析和模糊综合评价等方法进行海底稳定性评价和分区,在南海北部陆坡[13]、南堡-曹妃甸海域[14]和莱州湾[15]等区域进行了小范围的宏观评价。然而,这些区域大多位于近海,深远海海底稳定性评价研究还存在较多空白。相较于近海,深远海地质环境复杂,具有勘查难度大、数据精度低和研究成果少等问题,如何基于现有数据资料正确、全面地评价深远海海底稳定性,对于深远海资源开发和工程建设具有深远意义。

    海底微地貌是影响深远海海底稳定性的重要因素,不仅其本身的起伏变化会对区域稳定性产生影响,而且常为海底滑坡、陡坎等致灾因子的发育提供条件。基于研究团队前期工作基础,本文选取西太平洋菲律宾海中南部某区域为研究区,利用ArcGIS平台建立研究区DEM(数字高程模型,Digital Elevation Model),提取宏、微观地貌因子(坡度、地形起伏度),结合海底地震、海底底质类型、海底地质灾害等要素,通过模糊数学评价方法将以上要素数字化,综合分析研究区海底稳定性并进行分区,提出了基于微地貌特征的深远海海底稳定性评价方法。研究成果能够为深远海海底稳定性评价提供技术方法参考,丰富深远海海洋地质研究。

    研究区地处欧亚板块、印度-澳大利亚和太平洋板块交汇处,位于西太平洋菲律宾海中南部,横跨西菲律宾海盆和帕里西维拉海盆,九州-帕劳海岭从中间穿过,范围为14.5°~17.0°N、132.5°~136.0°E(图1),面积约为1.0×105 km2,海底标高为−6712.8~−1692.2 m。

    图  1  菲律宾海板块海底地形地貌与研究区位置图[22]
    底图数据来源于全球水深数据。
    Figure  1.  Seabed topography and geomorphology of the Philippine Sea plate and location of the study area [22]
    DEM are derived from global bathymetric data.

    菲律宾海四周被呈链状的岛弧、海沟包围,中部宽阔,南北窄小,近菱形展布,具有典型的沟-弧-盆体系特征[16]。现有的研究表明,菲律宾海板块自61 Ma开始扩张,期间经历多次旋转、扩张,其形成与演化与太平洋板块运动息息相关[17]。在43 Ma左右,受太平洋板块俯冲影响形成古伊豆-小笠原岛弧[11]。其后,因四国-帕里西维拉海盆扩张影响,古伊豆-小笠原岛弧裂解为九州-帕劳海岭和伊豆-小笠原-马里亚纳弧[18-21]

    研究区受复杂而剧烈的地质作用影响,微地貌单元广泛分布,发育有海山、海丘、山间谷地等多种微地貌单元,其中海山主要发育在九州-帕劳海岭及其西部海盆,海丘、山间谷地则集中分布在海岭东侧的帕里西维拉海盆。研究区能够较为明显地反映出菲律宾海海底地貌特征,利于对其海底稳定性进行研究,具有一定的代表性。

    本文数据主要来源于公共平台公开的海底高程数据,主要有SRTM、ASTER等。利用ArcGIS平台建立研究区海底DEM(DEM即数字高程模型,是通过有限的地形高程数据实现对地面地形的数字化模拟,是用一组有序数值阵列形式表示地面高程的一种实体地面模型),从微观和宏观两个角度提取关键地貌因子;基于全球地震数据(https://earthquake.usgs.gov/earthquakes/search/),运用Kriging插值法对研究区地震区划进行分析;海洋地质灾害分布和底质类型数据来源于对公开数据的处理和识别。

    坡度(微观地貌因子)和地形起伏度(宏观地貌因子)作为典型的地貌因子,能够代表性地反映海底微地貌特征,参考已有研究成果,本文选择坡度和地形起伏度两个地貌因子进行海底稳定性评价[23-24]。将研究区DEM在ArcGIS平台中以“标准差”的形式进行分类,根据表1中的计算方式,获取研究区坡度和地形起伏度分布特征。

    表  1  典型地貌因子概念及算法[25-26]
    Table  1.  Concept and algorithm of typical geomorphic factor [25-26]
    地形因子概念公式
    坡度描述地表单元陡缓程度,表示地面在某点的倾斜度tanα=△h/△dα—坡度,△h—高程差(m),△d—水平距离(m)
    地形起伏度区域最高点与最低点海拔高度的差值,反映地形起伏特征[25]RAi=ZimaxZiminRAi—地形起伏度(m),Zimax—区域内最大高程值(m),Zimin—区域内最小高程值(m)
    下载: 导出CSV 
    | 显示表格

    由于影响海底稳定性的因素复杂,稳定性分级界限模糊,加之人们主观上的差异,不易对海底稳定性得出一致评价。因此,综合前人的经验和相关的评价结果,采用模糊数学方法来进行海底稳定性评价工作是可行的。

    模糊数学评价是地质评价中常用的一种数学评价方法,可以实现将相对复杂且不够确定的影响因素数学化。研究区位于西太平洋菲律宾海中南部,受制于地理位置和技术条件,很难对其海底稳定性进行精确评价,模糊数学评价法可以利用模糊数学的隶属度和隶属函数理论把定性评价转化为定量评价,从而对研究对象做出一个综合的评价[27]。通过数字化评价指标,综合评定评价指标等级,可以有效减少评价主体间的主观评定误差(图2)。

    图  2  评价方法的技术路线
    Figure  2.  The technical flowchart for evaluation methods

    研究区坡度变化范围为0°~58°,平均坡度6.9°,标准差为7.2°,坡度主要集中于0°~15°,表明研究区坡度变化较大,但大部分区域坡度较为平缓。坡度的低值主要集中在研究区的中北部,该区域地形较为平坦,坡度变化较小;研究区东部和西南部地形相对复杂,海山、海丘等地貌单元发育,坡度较高且变化频繁;坡度最大值分布在九州-帕劳海岭,该区域具有较高的高程差,地形起伏大,坡度较高。

    研究区地形起伏度相对较小,主要集中在44.6 m以下,平均值为31.9 m,最大值仅为344.6 m。低值主要集中在研究区中北部,该区域地形较为平坦,地貌单元类型相对单一;高值集中在九州-帕劳海岭和海山等区域。

    研究区内底质类型丰富,除常见的远洋黏土外,区域内广泛发育了基岩、铁锰结核和硅藻软泥。基岩硬度相对较高,分布的区域通常具有较大的土体承载力;硅藻软泥则相反,其相对较软,对土体承载力会产生完全不同的影响。

    海底滑坡在主、被动大陆边缘广泛发育,可以将失稳的沉积物带到深海盆地[28-33]。九州-帕劳海岭边缘地带不仅有较高的坡度,而且具有很大的高程差,极易发生海底滑坡。研究区中北部地形较为平坦,西部海盆区虽然坡度也比较大,但是高程差相对较低,地貌起伏变化不大,为海底滑坡的低易发区。

    陡坎是研究区内一种常见且分布广泛的致灾因子,是指与海底斜坡地形走向平行或近于平行且坡度较大的海底陡坡[34]。受九州-帕劳海岭和大型地貌单元影响,陡坎主要发育在研究区中部和大规模海山、海丘群处,这些区域都具有比较高的高程差和坡度。

    崩塌是海底较陡斜坡上的岩土体突然受力而脱离崩落的地质现象,具有较大的破坏性。研究区地形起伏较大,陡坡广泛发育,为崩塌的产生提供了有利条件。区域内大规模海山、山间盆地以及九州-帕劳海岭附近往往都具有较大的地形起伏度和坡度,是崩塌的易发区域。

    本文采用模糊数学原理,建立由多种影响因素组成的评价因素集A,构建与影响因素集相匹配的模糊评语集X。通过模糊信息化确定各单一因素对评审等级的归属程度,建立评价因素集A到评语集X的模糊评价矩阵R。利用模糊权值矩阵计算各因素在评价目标中的权重值W,最后运用模糊运算矩阵计算出定量解。

    评价指标主要由孕灾背景和潜在地质灾害两个指标组成,其中孕灾背景指标又包括地震区划、微观地貌因子、宏观地貌因子和底质类型四种指标[5]。研究区位于菲律宾海盆中南部,水深为–6712.8~–1692.2 m,区域内无大型地震,受热带气旋影响不大,基于以上特点,综合考虑各个指标特性,将5类指标划分为5个等级,建立海底稳定性评价指标体系(表2)。数据来源于海底地震烈度区划图、海底地质灾害分布图、微观与宏观地貌因子分布图(通过对坡度、坡度变率、坡向、坡向变率、曲率5种微观地貌因子和地表粗糙度、地形起伏度、高程变异系数、地表切割深度4种宏观地貌因子进行综合分析,参考已有研究成果,分别选择坡度和地形起伏度作为微观与宏观地貌因子的指标)以及底质类型分布图。

    表  2  海底稳定性评价指标体系
    Table  2.  Evaluation index system for seabed stability
    指标体系地震区划灾害地质微观地貌因子(坡度)宏观地貌因子(地形起伏度)底质类型
    1级地震动峰加速度值=0.05 g,相当于5级地震区海底火山0°~3°0~19 m基岩
    2级地震动峰加速度值=0.1 g,相当于6级地震区裂谷3°~7°19~45 m铁锰结壳
    3级地震动峰加速度值=0.15 g,相当于7级地震区海底滑坡7°~15°45~77 m含铁锰结核的远洋黏土
    4级地震动峰加速度值=0.2 g,相当于8级地震区陡坎15°~25°77~120 m远洋黏土
    5级地震动峰加速度值≥0.3 g,相当于9级地震区崩塌>25°>120 m硅藻软泥
    下载: 导出CSV 
    | 显示表格

    根据选取的5类评价指标,可以得到稳定性评价因素集A(式1)。

    $$ A = \left\{ {{a_1},{a_2},{a_3},{a_4},{a_5}} \right\} $$ (1)

    a1—地震区划指标,a2—灾害地质指标,a3—微观地貌因子指标,a4—宏观地貌因子指标,a5—底质类型指标。

    逻辑信息分类法和特征分类法是常用的分级方法,通常将级别划分为3级和5级[35]。考虑到研究区具体情况,本文选择五级分类体系,分为不稳定、较不稳定、中等稳定、较稳定和基本稳定5个等级区,得到模糊评语集X

    $$ X = \{ {v_1},\;{v_2},\;{v_3},\;{v_4},\;{v_5}\} $$ (2)

    v1—基本稳定,v2—较稳定,v3—中等稳定,v4—较不稳定性,v5—不稳定。

    评价因子归属度反映了评价因子隶属于评语集的程度,通常由隶属函数确定。由于研究区位于深海,难以用具有连续变化特点的函数对其进行模糊信息化,因此选取具有正态分布特点的“0,0.2,0.5,0.8,1.0,0.8,0.5,0.2,0”作为隶属度函数,对海底稳定性评价因子的影响程度进行表示(表3)。通过例证法、正太型函数分布规律以及专家经验法得到隶属度值,各评价因子的隶属程度应基本相等[23, 36]

    表  3  海底稳定性评价指标隶属度值
    Table  3.  Membership value of evaluation index of seabed stability
    稳定性
    等级
    评价指标
    地震区划灾害地质微观地貌因子宏观地貌因子底质类型
    基本稳定1级1级1级1级1级
    v10.150.150.150.150.15
    较稳定2级2级2级2级2级
    v20.300.300.300.300.30
    中等稳定3级3级3级3级3级
    v30.550.550.550.550.55
    较不稳定4级4级4级4级4级
    v40.800.800.800.800.80
    不稳定5级5级5级5级5级
    v50.850.850.850.850.85
    下载: 导出CSV 
    | 显示表格

    利用获取的评价指标隶属度值对各评价指标进行量化,得到稳定性评价因素集A到模糊评语集X的模糊评价矩阵R

    $$ R=\left[\begin{array}{ccc}{v}_{1}& {v}_{2}& \cdots {v}_{5}\\ {r}_{11}& {r}_{12}& \cdots {r}_{15}\\ {r}_{21}& {r}_{22}& \cdots {r}_{25}\\ \vdots & \vdots & \vdots \\ {r}_{51}& {r}_{52}& \cdots {r}_{55}\end{array}\right] $$ (3)

    v1v2v3v4v5—各评价因子的隶属度值;r1—地震区划指标;r2—灾害地质指标;r3—微观地貌因子指标;r4—宏观地貌因子指标;r5—底质类型指标。

    评价指标的权重值反映了评价因子间的相对重要性,对海底稳定性评价具有重要意义。本文采用专家评判与层次分析决策相结合的方法确定海底稳定性评价指标的权重值[37]。首先通过专家对各指标的相对重要性进行判断,然后利用层次分析过程建立权重值判别表,得到权重值判别矩阵,最终计算出各评价指标的权重值分配集W表4)。

    表  4  评价指标权重值
    Table  4.  The weight value of the evaluation index
    评价指标地震区划灾害地质微观地貌因子宏观地貌因子底质类型
    权重值0.08820.44120.22060.14710.1029
    下载: 导出CSV 
    | 显示表格

    通过建立的模糊关系矩阵R和权值分配集W,以3'×3'大小的网格单元对研究区海底稳定性进行评价,利用模糊运算矩阵得到综合评价结果B

    $$ B = W * R = ({b_1},\;{b_2},\;{b_3},\;{b_4},\;{b_5}) $$ (4)

    W—权重值分配集,R—模糊评价矩阵,*—模糊变换算子。

    评价结果B是基于评价因素集A的综合评价结果,根据模糊数学的最大隶属度原则,取隶属度最大者所对应的等级作为评价单元海底稳定性等级。

    以3'×3'大小的网格为评价单元,依据模糊数学原理构建的模糊综合评价系统进行计算,采用优势合并方法,将优势的等级值作为该区的稳定性等级,得到研究区海底稳定性区划图(图3)。

    图  3  海底稳定性区划图
    Figure  3.  Division map of submarine stability

    (1)基本稳定区

    研究区基本稳定区主要分布在中北部。该区域地形地貌相对平坦,缺乏大规模地貌单元发育,受宏观、微观地貌因子影响较小。此外,由于构造、岩浆热液等地质运动相对匮乏,灾害地质因子并不发育,仅有局部地区分布少量海底火山,因此具有较高的稳定性。

    (2)较稳定区

    较稳定区广泛分布在各地貌单元过渡区。该区地形地貌的坡度和地形起伏度通常不大,底质类型多为基岩和铁锰结核,一般受地质灾害影响较小,较为稳定。

    (3)中等稳定区

    中等稳定区在研究区各个范围内都有发育。该区通常具有一定的坡度和地形起伏度,多位于大规模地貌的过渡区或较为陡峭的微地貌单元处。受地形起伏变化和底质类型影响,局部可能发育海底滑坡等较严重的地质灾害,但总体还是比较稳定。

    (4)较不稳定区

    较不稳定区零散分布在研究区内。该分区主要位于地形地貌变化较大的区域,可能受海底滑坡、陡坎等地质灾害影响。此外,局部地区的不稳定也可能与硅藻软泥的分布有关。

    (5)不稳定区

    不稳定区大多位于海山、山间盆地等地形地貌起伏变化较大、坡度较陡的区域。该分区通常受灾害地质因子影响较大,是海底滑坡、陡坎、崩塌等地质灾害的易发区域。这些区域的底质类型多为远洋黏土和硅藻软泥,稳定性相对较低。

    (1)西太平洋菲律宾海微地貌单元发育,其海底稳定性与地形地貌变化密切相关。稳定区通常较为平坦,缺乏地貌单元和灾害地质干扰;不稳定区主要集中在九州-帕劳海岭及其西部的海山、山间盆地等大规模地貌单元发育区;较稳定、中等稳定、较不稳定区广泛分布在各地貌单元及地貌单元间的过渡地带。

    (2)基于研究区自身特点,选取地震区划、灾害地质、微观地貌因子、宏观地貌因子和底质类型作为评价因子,运用模糊数学原理构建稳定性评价模型,建立了5类5级评价指标体系。评价结果能较为合理地显示研究区海底稳定性,与实际情况基本吻合。

    (3)深远海海底稳定性评价对于我国未来的海洋资源开发、海洋经济发展具有重要指导意义。然而,该领域目前还存在很大空白,技术规程有待完善,研究成果也大多集中在近海。建议规范深远海海底稳定性评价体系,为进一步建设深远海海洋工程奠定基础。

  • 图  1   北极东西伯利亚陆架概况[29]及取样站位分布图

    Figure  1.   Map of the East Siberian Arctic Shelf [29] and sampling locations

    图  2   北极东西伯利亚陆架表层沉积汞的分布特征

    Figure  2.   Spatial distribution of mercury in the surface sediments of the East Siberian Arctic Shelf

    图  3   北极东西伯利亚陆架表层沉积物汞的富集因子分布特征

    Figure  3.   Distribution of enrichment factor of mercury in the surface sediments of the East Siberian Arctic Shelf

    图  4   北极东西伯利亚陆架表层沉积物粒度分布特征

    粒度数据引自文献[45,48]。

    Figure  4.   Grain-size distribution in the surface sediments of the East Siberian Arctic Shelf

    Grain-size data are cited from references [45,48].

    图  5   北极东西伯利亚陆架表层沉积物各粒级组分与沉积汞含量的相关性

    粒度数据引自文献[45,48]。

    Figure  5.   Relationship of sedimentary mercury concentration and grain size in the surface sediments of the East Siberian Arctic Shelf

    Grain-size data are cited from references [45,48].

    图  6   东西伯利亚陆架表层沉积物比表面积分布(a)及其与沉积汞含量的相关性(b)

    比表面积数据引自文献[49-50]。

    Figure  6.   Specific surface area distribution in the surface sediments of the East Siberian Arctic Shelf (a) and its relation with sedimentary mercury concentration (b)

    Specific surface area data are cited from references [49-50].

    图  7   北极东西伯利亚陆架表层沉积物总有机碳的分布特征

    有机碳数据引自文献[48-49]。

    Figure  7.   Distribution of total organic carbon in the surface sediments of the East Siberian Arctic Shelf

    Total organic carbon data are cited from references [48-49].

    图  8   北极东西伯利亚陆架(a)、拉普捷夫海(b)、东西伯利亚海(c)和楚科奇海(d)沉积汞含量与总有机碳的相关性

    有机碳数据引自文献[48-49]。

    Figure  8.   Relationship of sedimentary mercury concentration and total organic carbon in the surface sediments of the East Siberian Arctic Shelf (a), Laptev Sea (b), East Siberian Sea (c), and Chukchi Sea (d)

    Total organic carbon data are cited from references [48-49].

    图  9   不同海域表层沉积物汞富集因子平均值对比

    东海和黄海(N = 152)[76-77],鄂霍次克海(N = 26)[23,78],西北冰洋(N = 7)[23],东西伯利亚海(N = 41,本文),拉普捷夫海(N = 23,本文),N代表样品数目,圆点表示富集因子的平均值,实线表示样品的标准偏差。

    Figure  9.   Comparison of mean enrichment factor of the sedimentary mercury in surface sediments from different regions

    The Yellow Sea and the East China Sea: N = 152 [76-77]; the Okhotsk Sea: N = 26 [23,78]; the western Arctic Ocean: N = 7 [23]. The East Siberian Sea: N = 41 (this study). The Laptev Sea: N = 23 (this study). N: the number of samples; the middle dot represents the mean enrichment factor and the vertical solid line represents the standard deviation of the samples.

    表  1   东西伯利亚及周边区域的主要河流特征[33-37]

    Table  1   Characteristics of major rivers in eastern Siberia and surrounding areas [33-37]

    河流流域面积
    /(103 km2)
    径流量
    /(km3/a)
    输沙量
    /(106 t/a)
    汞通量
    /(kg/a)
    鄂毕河2990402.015.52421
    叶尼塞河2540580.04.73642
    哈坦加河437.285.31.7
    勒拿河2460532.020.76591
    亚纳河22431.94.0
    因迪吉尔卡河329.454.211.1
    科雷马河650122.010.11107
    下载: 导出CSV

    表  2   北极东西伯利亚陆架表层沉积汞含量分区

    Table  2   Regional-specific Hg concentrations in the surface sediments of the East Siberian Arctic Shelf

    区域平均水深/m汞含量/(ng/g)汞含量平均值/(ng/g)站位数
    Ⅰ 区264~503334
    Ⅱ 区8940~1145838
    Ⅲ 区180169~1198415
    下载: 导出CSV
  • [1]

    Selin N E. Global biogeochemical cycling of mercury: a review [J]. Annual Review of Environment and Resources, 2009, 34: 43-63. doi: 10.1146/annurev.environ.051308.084314

    [2]

    Sonke J E, Heimbürger L E. Mercury in flux [J]. Nature Geoscience, 2012, 5(7): 447-448. doi: 10.1038/ngeo1508

    [3]

    Lindberg S, Bullock R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition [J]. AMBIO:A Journal of the Human Environment, 2007, 36(1): 19-32. doi: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2

    [4]

    Aksentov K I, Astakhov A S, Ivanov M V, et al. Assessment of mercury levels in modern sediments of the East Siberian Sea [J]. Marine Pollution Bulletin, 2021, 168: 112426. doi: 10.1016/j.marpolbul.2021.112426

    [5]

    Kita I, Kojima M, Hasegawa H, et al. Mercury content as a new indicator of ocean stratification and primary productivity in Quaternary sediments off Bahama Bank in the Caribbean Sea [J]. Quaternary Research, 2013, 80(3): 606-613. doi: 10.1016/j.yqres.2013.08.006

    [6]

    Kita I, Yamashita T, Chiyonobu S, et al. Mercury content in Atlantic sediments as a new indicator of the enlargement and reduction of Northern Hemisphere ice sheets [J]. Journal of Quaternary Science, 2016, 31(3): 167-177. doi: 10.1002/jqs.2854

    [7]

    Scaife J D, Ruhl M, Dickson A J, et al. Sedimentary mercury enrichments as a marker for submarine large igneous province volcanism? Evidence from the Mid-Cenomanian event and Oceanic Anoxic Event 2 (Late Cretaceous) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4253-4275. doi: 10.1002/2017GC007153

    [8]

    Font E, Adatte T, Andrade M, et al. Deccan volcanism induced high-stress environment during the Cretaceous-Paleogene transition at Zumaia, Spain: evidence from magnetic, mineralogical and biostratigraphic records [J]. Earth and Planetary Science Letters, 2018, 484: 53-66. doi: 10.1016/j.jpgl.2017.11.055

    [9]

    Grasby S E, Them II T R, Chen Z H, et al. Mercury as a proxy for volcanic emissions in the geologic record [J]. Earth-Science Reviews, 2019, 196: 102880. doi: 10.1016/j.earscirev.2019.102880

    [10]

    Lim D, Kim J, Xu Z K, et al. New evidence for Kuroshio inflow and deepwater circulation in the Okinawa Trough, East China Sea: sedimentary mercury variations over the last 20 kyr [J]. Paleoceanography, 2017, 32(6): 571-579. doi: 10.1002/2017PA003116

    [11]

    Zou J J, Chang Y P, Zhu A M, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current [J]. Quaternary Science Reviews, 2021, 265: 107051. doi: 10.1016/j.quascirev.2021.107051

    [12]

    Krabbenhoft D P, Sunderland E M. Global change and mercury [J]. Science, 2013, 341(6153): 1457-1458. doi: 10.1126/science.1242838

    [13]

    Schuster P F, Striegl R G, Aiken G R, et al. Mercury export from the Yukon River basin and potential response to a changing climate [J]. Environmental Science & Technology, 2011, 45(21): 9262-9267.

    [14]

    Dastoor A P, Durnford D A. Arctic ocean: is it a sink or a source of atmospheric mercury? [J]. Environmental Science & Technology, 2014, 48(3): 1707-1717.

    [15]

    Stern G A, Macdonald R W, Outridge P M, et al. How does climate change influence arctic mercury? [J]. Science of the Total Environment, 2012, 414: 22-42. doi: 10.1016/j.scitotenv.2011.10.039

    [16]

    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021.

    [17]

    Obrist D, Agnan Y, Jiskra M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution [J]. Nature, 2017, 547(7662): 201-204. doi: 10.1038/nature22997

    [18]

    Outridge P M, Macdonald R W, Wang F, et al. A mass balance inventory of mercury in the Arctic Ocean [J]. Environmental Chemistry, 2008, 5(2): 89-111. doi: 10.1071/EN08002

    [19]

    Fisher J A, Jacob D J, Soerensen A L, et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations [J]. Nature Geoscience, 2012, 5(7): 499-504. doi: 10.1038/ngeo1478

    [20]

    AMAP. AMAP Assessment 2002: Heavy Metals in the Arctic[M]. Oslo: Arctic Monitoring and Assessment Programme, 2004.

    [21]

    Steffen A, Douglas T, Amyot M, et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow [J]. Atmospheric Chemistry and Physics, 2008, 8(6): 1445-1482. doi: 10.5194/acp-8-1445-2008

    [22]

    Zhang Y X, Jacob D J, Dutkiewicz S, et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans [J]. Global Biogeochemical Cycles, 2015, 29(6): 854-864. doi: 10.1002/2015GB005124

    [23]

    Kim H, Lee K, Lim D I, et al. Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean [J]. Science of the Total Environment, 2019, 654: 801-810. doi: 10.1016/j.scitotenv.2018.11.076

    [24]

    Darby D A, Polyak L, Bauch H A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas-a review [J]. Progress in Oceanography, 2006, 71(2-4): 129-144. doi: 10.1016/j.pocean.2006.09.009

    [25]

    Vonk J E, Sánchez-García L, van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia [J]. Nature, 2012, 489(7414): 137-140. doi: 10.1038/nature11392

    [26]

    Shakhova N, Semiletov I, Gustafsson O, et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf [J]. Nature Communications, 2017, 8: 15872. doi: 10.1038/ncomms15872

    [27]

    Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific‐Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean) [J]. Journal of Quaternary Science, 2017, 32(3): 362-379. doi: 10.1002/jqs.2929

    [28]

    Opsahl S, Benner R, Amon R M W. Major flux of terrigenous dissolved organic matter through the Arctic Ocean [J]. Limnology and Oceanography, 1999, 44(8): 2017-2023. doi: 10.4319/lo.1999.44.8.2017

    [29]

    Stein R. Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment[M]. Amsterdam: Elsevier, 2008.

    [30]

    Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans [J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.

    [31]

    Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean [J]. Global Biogeochemical Cycles, 2002, 16(4): 1098.

    [32]

    Guay C K, Falkner K K. Barium as a tracer of Arctic halocline and river waters [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1997, 44(8): 1543-1569. doi: 10.1016/S0967-0645(97)00066-0

    [33]

    Dastoor A, Angot H, Bieser J, et al. Arctic mercury cycling [J]. Nature Reviews Earth & Environment, 2022, 3(4): 270-286.

    [34]

    Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean [J]. Science, 2002, 298(5601): 2171-2173. doi: 10.1126/science.1077445

    [35]

    Sonke J E, Teisserenc R, Heimbürger-Boavida L E, et al. Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): E11586-E11594.

    [36]

    Zolkos S, Krabbenhoft D P, Suslova A, et al. Mercury export from arctic great rivers [J]. Environmental Science & Technology, 2020, 54(7): 4140-4148.

    [37]

    Gordeev V V. Fluvial sediment flux to the Arctic Ocean [J]. Geomorphology, 2006, 80(1-2): 94-104. doi: 10.1016/j.geomorph.2005.09.008

    [38]

    Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: a wind- and buoyancy-forced Arctic coastal current [J]. Journal of Geophysical Research:Oceans, 1999, 104(C12): 29697-29713. doi: 10.1029/1999JC900161

    [39] 李日升, 郭跃安, 孙冬娥, 等. 化学蒸气发生-多通道原子荧光光谱法同时测定化探样品中的砷、锑、铋、汞[J]. 理化检验(化学分册), 2014, 50(5):569-571

    LI Risheng, GUO Yuean, SUN Donge, et al. Simultaneous determination of As, Sb, Bi, and Hg in geological samples by Hg-Multi-channel-AFS [J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(5): 569-571.

    [40]

    Wedepohl K H. The composition of the continental crust [J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    [41]

    Sattarova V, Aksentov K, Astakhov A, et al. Trace metals in surface sediments from the Laptev and East Siberian Seas: levels, enrichment, contamination assessment, and sources [J]. Marine Pollution Bulletin, 2021, 173: 112997. doi: 10.1016/j.marpolbul.2021.112997

    [42]

    Zhang J, Liu C L. Riverine composition and estuarine geochemistry of particulate metals in China: weathering features, anthropogenic impact and chemical fluxes [J]. Estuarine, Coastal and Shelf Science, 2002, 54(6): 1051-1070. doi: 10.1006/ecss.2001.0879

    [43]

    Chakraborty P, Sarkar A, Vudamala K, et al. Organic matter: a key factor in controlling mercury distribution in estuarine sediment [J]. Marine Chemistry, 2015, 173: 302-309. doi: 10.1016/j.marchem.2014.10.005

    [44] 赵一阳. 中国海大陆架沉积物地球化学的若干模式[J]. 地质科学, 1983(4):307-314

    ZHAO Yiyang. Some geochemical patterns of shelf sediments of the China seas [J]. Scientia Geologica Sinica, 1983(4): 307-314.

    [45] 李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物物源: 来自黏土矿物和化学元素的证据[J]. 海洋学报, 2021, 43(3):76-89

    LI Qiuling, QIAO Shuqing, SHI Xuefa, et al. Sediment provenance of the East Siberian Arctic Shelf: evidence from clay minerals and chemical elements [J]. Haiyang Xuebao, 2021, 43(3): 76-89.

    [46]

    Thorne L T, Nickless G. The relation between heavy metals and particle size fractions within the severn estuary (U. K. ) inter-tidal sediments [J]. Science of the Total Environment, 1981, 19(3): 207-213. doi: 10.1016/0048-9697(81)90017-6

    [47]

    Araújo M F D, Bernard P C, Van Grieken R E. Heavy metal contamination in sediments from the Belgian coast and Scheldt estuary [J]. Marine Pollution Bulletin, 1988, 19(6): 269-273. doi: 10.1016/0025-326X(88)90597-8

    [48] 夏逸. 北极拉普捷夫海现代沉积有机碳源汇过程与埋藏记录[D]. 自然资源部第一海洋研究所硕士学位论文, 2022

    XIA Yi. Source sink processes and burial records of modern sedimentary organic carbon in the Arctic Laptev Sea[D]. Master Dissertation of First Institute of Oceanography, Ministry of Natural Resources, 2022.

    [49] 叶君, 胡利民, 石学法, 等. 基于木质素示踪北极东西伯利亚陆架沉积有机碳的来源、输运与埋藏[J]. 第四纪研究, 2021, 41(3):752-765 doi: 10.11928/j.issn.1001-7410.2021.03.11

    YE Jun, HU Limin, SHI Xuefa, et al. Sources, transport and burial of terrestrial organic carbon in the surface sediments across the East Siberian Arctic shelf, insights from lignin [J]. Quaternary Sciences, 2021, 41(3): 752-765. doi: 10.11928/j.issn.1001-7410.2021.03.11

    [50] 于文秀, 胡利民, 石学法, 等. 北极东西伯利亚陆架黑碳的地球化学特征及其环境意义[J]. 海洋地质与第四纪地质, 2022, 42(4):50-60 doi: 10.16562/j.cnki.0256-1492.2022022001

    YU Wenxiu, HU Limin, SHI Xuefa, et al. Geochemical characteristics of black carbon in surface sediments of the East Siberian Arctic Shelf and their environmental implications [J]. Marine Geology & Quaternary Geology, 2022, 42(4): 50-60. doi: 10.16562/j.cnki.0256-1492.2022022001

    [51]

    Stein R. The great challenges in Arctic Ocean paleoceanography [J]. IOP Conference Series:Earth and Environmental Science, 2011, 14: 012001. doi: 10.1088/1755-1315/14/1/012001

    [52]

    Stein R, Fahl K. Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways, and sinks [J]. Geo-Marine Letters, 2000, 20(1): 27-36. doi: 10.1007/s003670000028

    [53]

    Semiletov I, Dudarev O, Luchin V, et al. The East Siberian Sea as a transition zone between Pacific‐derived waters and Arctic shelf waters [J]. Geophysical Research Letters, 2005, 32(10): L10614. doi: 10.1029/2005GL022490

    [54]

    Karlsson E S, Brüchert V, Tesi T, et al. Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers [J]. Marine Chemistry, 2015, 170: 11-22. doi: 10.1016/j.marchem.2014.12.005

    [55]

    Savelieva N I, Semiletov I P, Vasilevskaya L N, et al. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia [J]. Progress in Oceanography, 2000, 47(2-4): 279-297. doi: 10.1016/S0079-6611(00)00039-2

    [56]

    Stroeve J, Barrett A, Serreze M, et al. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness [J]. The Cryosphere, 2014, 8(5): 1839-1854. doi: 10.5194/tc-8-1839-2014

    [57] 胡利民, 石学法, 叶君, 等. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10):1073-1086 doi: 10.11867/j.issn.1001-8166.2020.086

    HU Limin, SHI Xuefa, YE Jun, et al. Advances in the sources and sink of sedimentary organic carbon in the East Siberian Arctic Shelf [J]. Advances in Earth Science, 2020, 35(10): 1073-1086. doi: 10.11867/j.issn.1001-8166.2020.086

    [58]

    Macdonald R W, Kuzyk Z Z A, Johannessen S C, et al. The vulnerability of Arctic shelf sediments to climate change [J]. Environmental Reviews, 2015, 23(4): 461-479. doi: 10.1139/er-2015-0040

    [59]

    Chen L, Zhang Y X, Jacob D J, et al. A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes [J]. Geophysical Research Letters, 2015, 42(14): 6076-6083. doi: 10.1002/2015GL064051

    [60]

    Emmerton C A, Graydon J A, Gareis J A L, et al. Mercury export to the Arctic Ocean from the Mackenzie River, Canada [J]. Environmental Science & Technology, 2013, 47(14): 7644-7654.

    [61]

    St. Pierre K A, Zolkos S, Shakil S, et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic [J]. Environmental Science & Technology, 2018, 52(24): 14099-14109.

    [62]

    Schaefer K, Elshorbany Y, Jafarov E, et al. Potential impacts of mercury released from thawing permafrost [J]. Nature Communications, 2020, 11(1): 4650. doi: 10.1038/s41467-020-18398-5

    [63]

    Søndergaard J, Tamstorf M, Elberling B, et al. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods [J]. Science of the Total Environment, 2015, 514: 83-91. doi: 10.1016/j.scitotenv.2015.01.097

    [64]

    Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury [J]. Annual Review of Ecology and Systematics, 1998, 29: 543-566. doi: 10.1146/annurev.ecolsys.29.1.543

    [65]

    Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19473-19481. doi: 10.1073/pnas.1017982108

    [66]

    Rontani J F, Charrière B, Sempéré R, et al. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic [J]. Organic Geochemistry, 2014, 75: 61-73. doi: 10.1016/j.orggeochem.2014.06.002

    [67] 汪卫国, 方建勇, 陈莉莉, 等. 楚科奇海悬浮体含量分布及其颗粒组分特征[J]. 极地研究, 2014, 26(1):79-88 doi: 10.13679/j.jdyj.2014.1.079

    WANG Weiguo, FANG Jianyong, CHEN Lili, et al. The distribution and composition of suspended particles in the Chukchi Sea [J]. Chinese Journal of Polar Research, 2014, 26(1): 79-88. doi: 10.13679/j.jdyj.2014.1.079

    [68] 王春娟, 刘焱光, 董林森, 等. 白令海与西北冰洋表层沉积物粒度分布特征及其环境意义[J]. 海洋地质与第四纪地质, 2015, 35(3):1-9

    WANG Chunjuan, LIU Yanguang, DONG Linsen, et al. The distribution pattern of the surface sediments in the Bering Sea and the western Arcric and its environmental implications [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 1-9.

    [69]

    Nürnberg D, Wollenburg I, Dethleff D, et al. Sediments in Arctic sea ice: implications for entrainment, transport and release [J]. Marine Geology, 1994, 119(3-4): 185-214. doi: 10.1016/0025-3227(94)90181-3

    [70]

    Charette M A, Kipp L E, Jensen L T, et al. The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015920.

    [71]

    Yurco L N, Ortiz J D, Polyak L, et al. Clay mineral cycles identified by diffuse spectral reflectance in Quaternary sediments from the Northwind Ridge: implications for glacial-interglacial sedimentation patterns in the Arctic Ocean [J]. Polar Research, 2010, 29(2): 176-197. doi: 10.1111/j.1751-8369.2010.00160.x

    [72]

    Figueiredo T S, Santos T P, Costa K B, et al. Effect of deep Southwestern Subtropical Atlantic Ocean circulation on the biogeochemistry of mercury during the last two glacial/interglacial cycles [J]. Quaternary Science Reviews, 2020, 239: 106368. doi: 10.1016/j.quascirev.2020.106368

    [73]

    Quémerais B, Cossa D, Rondeau B, et al. Mercury distribution in relation to iron and manganese in the waters of the St. Lawrence river [J]. Science of the Total Environment, 1998, 213(1-3): 193-201. doi: 10.1016/S0048-9697(98)00092-8

    [74]

    Shen J, Feng Q L, Algeo T J, et al. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy [J]. Earth and Planetary Science Letters, 2020, 543: 116333. doi: 10.1016/j.jpgl.2020.116333

    [75]

    Hasan A B, Kabir S, Reza A H M S, et al. Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary-Kumira), Chittagong, Bangladesh [J]. Journal of Geochemical Exploration, 2013, 125: 130-137. doi: 10.1016/j.gexplo.2012.12.002

    [76]

    Kim H, Lee K, Lim D I, et al. Widespread anthropogenic nitrogen in northwestern Pacific Ocean sediments [J]. Environmental Science & Technology, 2017, 51(11): 6044-6052.

    [77]

    Kim J, Lim D, Jung D, et al. Sedimentary mercury (Hg) in the marginal seas adjacent to Chinese high-Hg emissions: source-to-sink, mass inventory, and accumulation history [J]. Marine Pollution Bulletin, 2018, 128: 428-437. doi: 10.1016/j.marpolbul.2018.01.058

    [78]

    Astakhov A S, Gorbarenko S A, Bakhareva G A, et al. Distribution and accumulation rate of ore elements in Holocene and Late Glacial Sediments of the Deryugin Basin, Sea of Okhotsk [J]. Lithology and Mineral Resources, 2005, 40(2): 97-113. doi: 10.1007/s10987-005-0012-1

    [79]

    Sattarova V V, Aksentov K I. Geochemistry of mercury in surface sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and adjacent abyssal plain and northwest part of the Bering Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 154: 24-31. doi: 10.1016/j.dsr2.2017.09.002

    [80]

    Kalinchuk V, Aksentov K, Karnaukh V. Gaseous elemental mercury (Hg (0)) in the surface air over the Sea of Japan, the Sea of Okhotsk and the Kuril-Kamchatka sector of the Pacific Ocean in August-September 2017 [J]. Chemosphere, 2019, 224: 668-679. doi: 10.1016/j.chemosphere.2019.02.185

  • 期刊类型引用(0)

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  2428
  • HTML全文浏览量:  594
  • PDF下载量:  150
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-07-17
  • 修回日期:  2022-09-13
  • 录用日期:  2022-09-13
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回