留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测

吴淑玉 刘俊 陈建文 梁杰 张银国 袁勇 许明

吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5): 136-148. doi: 10.16562/j.cnki.0256-1492.2020031701
引用本文: 吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5): 136-148. doi: 10.16562/j.cnki.0256-1492.2020031701
WU Shuyu, LIU Jun, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YUAN Yong, XU Ming. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148. doi: 10.16562/j.cnki.0256-1492.2020031701
Citation: WU Shuyu, LIU Jun, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YUAN Yong, XU Ming. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148. doi: 10.16562/j.cnki.0256-1492.2020031701

南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测


doi: 10.16562/j.cnki.0256-1492.2020031701
详细信息
    作者简介:

    吴淑玉(1985—),女,在读博士,副研究员,主要从事地震资料解释和反演工作,E-mail:hnwushuyu@163.com

    通讯作者: 刘俊(1978—),男,博士,高级工程师,从事海洋地球物理处理工作,E-mail:vnlj@163.com
  • 基金项目:  青岛市市南区科技发展资金项目“南黄海中—古生界海相碳酸盐岩储层叠前反演研究”(2016-3-009-ZH);国家海洋局海底重点实验室基金“台西南盆地沉积基底特征和莫霍面构造形态综合地球物理研究”(KLSG1603);中国地质调查项目“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152),“海岸带和大陆架地质演化调查与评价”(DD20160147)
  • 中图分类号: P736

Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin

More Information
  • 摘要: 海相碳酸盐岩储层是南黄海盆地崂山隆起中—古生界重要的油气储层,由于钻井少,储层非均质性强,地震储层预测研究是油气勘探的重点和难点。以南黄海石炭系—下二叠统碳酸盐岩为例,通过分析CSDP-2井生物碎屑灰岩储层的岩石物性及井-震响应特征,发现生物碎屑灰岩声波阻抗高于纯灰岩以及碎屑岩的声波阻抗,低λρ具有较好的岩石物性特征,针对这种特点,采用叠前同时反演方法对孔隙型碳酸盐岩储层的岩性和物性进行预测。预测结果表明南黄海崂山隆起石炭系—下二叠统生物碎屑灰岩储层比较发育,横向不连续且具有较强的非均质性,位于古高地储层物性发育较好,其成因是由于受印支构造运动,上覆地层抬升到地表遭到暴露,加上淡水淋滤溶蚀作用,在一定程度上提高了碳酸盐岩储层的次生孔隙,形成了钻井岩心所揭示的储层特征,因此,高孔隙度的孔隙型碳酸盐岩是南黄海石炭系—下二叠统油气勘探的首选目标。
  • 图  1  南黄海盆地构造单元[53]

    F1:郯庐断裂带,F2:五莲-青岛-蓉城断裂,F3:连云港-千里岩断裂,F4:嘉山-响水断裂,F5:苏州-昆山断裂,F6:朝鲜西部断裂,F7:Honam断裂,F8:济州岛南缘断裂,F9:江绍断裂。

    Figure  1.  The tectonic map of the South Yellow Sea Basin (modified from reference[53])

    图  2  沉积相、岩性和地震解释剖面综合分析

    a. 南黄海晚石炭世船山期沉积相,红色框为本文研究区;b. 石炭世—二叠世岩性简化柱状图;c. 地震解释剖面(黑色箭头分别表示剖面的位置和石炭系—下二叠统对应的岩性)。

    Figure  2.  Integrated profiles of sedimentary facies,lithology and seismic interpretation

    a. The sedimentary facies map of the Late Carboniferous Chuanshan period in the South Yellow Sea, the red border is the research area of this paper;b. Simplified lithologic column charts from Carboniferous to Permian; c. seismic interpretation profile (Black arrows indicate the location of the profile and the corresponding lithology of the Carboniferous- Lower Permian).

    图  3  CSDP-2井上石炭统船山组生物碎屑灰岩柱状图和岩心照片

    a. 船山组岩心柱状图,箭头表示岩样分析位置;b. 1 730.4 m生物碎屑泥晶灰岩;c. 1 757.03 m生物碎屑亮晶灰岩充填孔;d. 1 777.83 m生屑泥晶灰岩;e. 1 819.5 m灰岩晶间孔。

    Figure  3.  The lithologic column and core photographs of upper Carboniferous Chuanshan Formation of Well CSDP-2

    a. Lithologic Column of the Chuanshan Formation, arrows indicate the location of the samples analyzed; b. Bioclastic micritic limestone at depth of 1 730.4 m; c. Bioclastic sparry limestone filled pore in the depth of 1 757.03 m; d. Bioclastic micrite limestone in the depth of 1 777.83 m;e. Limestone intergranular pore in the depth of 1 819.5 m.

    图  4  CZ12-1-1井测井曲线和地震响应特征

    Figure  4.  Logging and seismic characteristic of Well CZ12-1-1

    图  5  CSDP-2井岩性敏感参数交汇分析

    Figure  5.  Lithology- sensitive parameters from Well CSDP-2

    图  6  CSDP-2井物性敏感参数交汇分析

    Figure  6.  Property sensitive parameters from Well CSDP-2

    图  7  CSDP-2井石炭系—下二叠统生物碎屑灰岩段的λρ与孔隙度拟合

    Figure  7.  Fitting relationship between λρ and porosity of bioclastic limestone from Carboniferous to Lower Permian of Well CSDP-2

    图  8  南黄海叠前同时反演储层预测技术流程

    Figure  8.  Flow chart of pre-stack simultaneous inversion for reservoir prediction

    图  9  CSDP-2井合成地震记录及提取子波(a. 全叠加数据合成地震记录,b. 远、中、近叠加道集合成地震记录, c. 不同叠加道集提取的近、中、远角度子波,d. 不同角度提取子波的能量谱 )

    Figure  9.  The synthetic seismogram and extract wavelets of the Well CSDP-2(a. synthetic seismogram from full stack seismic, b. synthetic seismogram from far-mid-near stack seismic, c. wavelets extracted from far-mid-near synthetic seismogram, d. energy spectrum of wavelets extracted from different angles)

    10  叠前同时反演结果

    a. 纵波阻抗剖面代表岩性分布,b. λρ剖面代表物性优劣,c. 下石炭船山组物性切片,d. 孔隙度剖面。

    10.  Pre-stack simultaneous inversion results

    a. Longitudinal impedance profile-representing lithologic distribution; b. λρ profile-representing physical properties; c. Physical properties section of lower Carboniferous Chuanshan Formation; d. porosity profile.

  • [1] 罗平, 张静, 刘伟, 等. 中国海相碳酸盐岩油气储层基本特征[J]. 地学前缘, 2008, 15(1):36-50. [LUO Ping, ZHANG Jing, LIU Wei, et al. Characteristics of marine carbonate hydrocarbon reservoirs in China [J]. Earth Science Frontiers, 2008, 15(1): 36-50. doi: 10.3321/j.issn:1005-2321.2008.01.004
    [2] 胡必规. 下扬子区中、古生界油气前景[J]. 上海地质, 1988(2):21-27. [HU Bigui. Oil and gas future of Mesozoic and Palaeozoic at the Low Yangtze area [J]. Shanghai Geology, 1988(2): 21-27.
    [3] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705. [CAI Laixing, GUO Xingwei, XU Zhaohui, et al. Depositional environment of Upper Paleozoic in the central uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.
    [4] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中—古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202. [YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison [J]. Petroleum Geology & Experiment, 2017, 39(2): 195-202. doi: 10.11781/sysydz201702195
    [5] 冯志强, 陈春峰, 姚永坚, 等. 南黄海北部前陆盆地的构造演化与油气突破[J]. 地学前缘, 2008, 15(6):219-231. [FENG Zhiqiang, CHEN Chunfeng, YAO Yongjian, et al. Tectonic evolution and exploration target of the northern Foreland Basin of the South Yellow Sea [J]. Earth Science Frontiers, 2008, 15(6): 219-231. doi: 10.3321/j.issn:1005-2321.2008.06.029
    [6] 谢天峰. 南黄海重磁资料处理与断裂系统研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2008.

    XIE Tianfeng. Processing on gravity and magnetic data of South Yellow Sea and research on fracture system[D]. Master Dissertation of Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2008.
    [7] 陈建文, 施剑, 刘俊, 等. 南黄海海相中—古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8. [CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.
    [8] 蔡乾忠. 横贯黄海的中朝造山带与北、南黄海成盆成烃关系[J]. 石油与天然气地质, 2005, 26(2):185-192, 196. [CAI Qianzhong. Relationship between Sino-Korean orogenic belt traversing Yellow Sea and basin evolution and hydrocarbon generation in North and South Yellow Sea Basins [J]. Oil & Gas Geology, 2005, 26(2): 185-192, 196. doi: 10.3321/j.issn:0253-9985.2005.02.010
    [9] 冯志强, 姚永坚, 曾祥辉, 等. 对黄海中、古生界地质构造及油气远景的新认识[J]. 中国海上油气(地质), 2002, 16(6):367-373. [FENG Zhiqiang, YAO Yongjian, ZENG Xianghui, et al. New understanding of Mesozoic-Paleozoic tectonics and hydrocarbon potential in Yellow Sea [J]. China Offshore Oil and Gas (Geology), 2002, 16(6): 367-373.
    [10] Chen J W, Xu M, Lei B H, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019(1): 67-84.
    [11] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29. [CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.
    [12] 张训华, 杨金玉, 李刚, 等. 南黄海盆地基底及海相中、古生界地层分布特征[J]. 地球物理学报, 2014, 57(12):4041-4051. [ZHANG Xunhua, YANG Jinyu, LI Gang, et al. Basement structure and distribution of Mesozoic- Paleozoic marine strata in the South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2014, 57(12): 4041-4051. doi: 10.6038/cjg20141216
    [13] 吴淑玉, 陈建文, 梁杰, 等. 南黄海海相中—古生界碳酸盐岩储层特征及成藏模式:对比四川盆地和苏北盆地[J]. 海洋地质前沿, 2016, 32(1):13-21. [WU Shuyu, CHEN Jianwen, LIANG Jie, et al. Characteristics of Mesozoic-Palaeozoic Marine carbonate reservoir in the South Yellow Sea Basin and hydrocarbon accumulation: comparison between the Sichuan Basin and the Subei Basin [J]. Marine Geology Frontiers, 2016, 32(1): 13-21.
    [14] 王明健, 张训华, 王安国, 等. 南黄海盆地南部坳陷二叠系龙潭组—大隆组沉积相[J]. 海洋地质前沿, 2014, 30(7):46-50, 65. [WANG Mingjian, ZHANG Xunhua, WANG Anguo, et al. Depositional facies of Longtan and Dalong formations in the southern Depression of South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 46-50, 65.
    [15] 刘金庆, 许红, 孙晶, 等. 下扬子海区南黄海盆地油气勘探的几点认识[J]. 海洋地质前沿, 2012, 28(4):30-37. [LIU Jinqing, XU Hong, SUN Jing, et al. A discussion on oil and gas potential in the South Yellow Sea Basin of Lower Yangtze Sea area [J]. Marine Geology Frontiers, 2012, 28(4): 30-37.
    [16] 陈建文, 张异彪, 刘俊, 等. 南黄海“高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17. [CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The "HRS" seismic exploration technology and its application in the South Yellow Sea Basin [J]. Marine geology Frontiers, 2016, 32(10): 9-17.
    [17] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23. [CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.
    [18] Yuan Y, Chen J W, LIANG J, et al. Hydrocarbon Geological Conditions and Exploration Potential of Mesozoic-Paleozoic Marine Strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2019, 18(6): 1329-1343. doi: 10.1007/s11802-019-3853-2
    [19] 罗开平, 黄泽光, 蒋小琼, 等. 川东北地区优质碳酸盐岩储层改造机制探讨[J]. 石油实验地质, 2011, 33(6):559-563. [LUO Kaiping, HUANG Zeguang, JIANG Xiaoqiong, et al. Reformation mechanism of high-quality carbonate reservoirs in northeastern Sichuan Basin [J]. Petroleum Geology & Experiment, 2011, 33(6): 559-563. doi: 10.3969/j.issn.1001-6112.2011.06.001
    [20] 吴熙纯, 王权锋, 陈斯忠, 等. 从世界第三纪生物礁的油气储集潜能看中国南海生物礁储层发育和分布的控制因素[J]. 中国海上油气, 2011, 23(4):218-224. [WU Xichun, WANG Quanfeng, CHEN Sizhong, et al. Considering controls on development and distribution of reef reservoirs in South China Sea from the hydrocarbon accumulation potential of tertiary reefs in the world [J]. China Offshore Oil and Gas, 2011, 23(4): 218-224. doi: 10.3969/j.issn.1673-1506.2011.04.002
    [21] 杨雪飞, 王兴志, 杨跃明, 等. 川中地区下寒武统龙王庙组白云岩储层成岩作用[J]. 地质科技情报, 2015, 34(1):35-41. [YANG Xuefei, WANG Xingzhi, YANG Yueming, et al. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in Central Sichuan Basin [J]. Geological Science and Technology Information, 2015, 34(1): 35-41.
    [22] 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3):268-277. [DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of Central Sichuan Paleo-uplift, Sichuan Basin [J]. Petroleum Exploration and Development, 2014, 41(3): 268-277. doi: 10.11698/PED.2014.03.02
    [23] 高刚, 贺振华, 黄德济, 等. 川东北地区碳酸盐岩储层孔隙度预测方法研究[J]. 科学技术与工程, 2013, 13(10):2635-2641. [GAO Gang, HE Zhenhua, HUANG Deji, et al. Research on predicting the porosity of carbonate reservoir in the Northeast Area of Sichuan [J]. Science Technology and Engineering, 2013, 13(10): 2635-2641. doi: 10.3969/j.issn.1671-1815.2013.10.004
    [24] 高刚. 基于碳酸盐岩孔隙结构预测孔隙度方法研究[J]. 地球物理学进展, 2013, 28(2):920-927. [GAO Gang. Method for predicting the porosity based on the pore structure of carbonate [J]. Progress in Geophysics, 2013, 28(2): 920-927. doi: 10.6038/pg20130245
    [25] 雷芬丽, 贺振华, 文晓涛, 等. ZH区碳酸盐岩储层孔隙度预测方法研究[J]. 石油天然气学报(江汉石油学院学报), 2010, 32(3):236-239. [LEI Fenli, HE Zhenhua, WEN Xiaotao, et al. Study on prediction method of porosity of carbonate reservoir in ZH area [J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2010, 32(3): 236-239.
    [26] 代双河, 田兵, 韩宇春. 基质孔隙型碳酸盐岩储层预测技术及应用[J]. 石油地球物理勘探, 2006, 41(6):681-686. [DAI Shuanghe, TIAN Bing, HAN Yuchun. Prediction of matrix porous carbonate reservoir and application [J]. Oil Geophysical Prospecting, 2006, 41(6): 681-686. doi: 10.3321/j.issn:1000-7210.2006.06.014
    [27] 刘欣欣, 印兴耀, 张峰. 一种碳酸盐岩储层横波速度估算方法[J]. 中国石油大学学报(自然科学版), 2013, 37(1):42-49. [LIU Xinxin, YIN Xingyao, ZHANG Feng. S-wave velocity estimation method in carbonate reservoir [J]. Journal of China University of Petroleum, 2013, 37(1): 42-49.
    [28] 包世海, 张秀平, 杨玉凤, 等. 川东北部飞仙关组鲕滩储层含气性识别方法[J]. 天然气工业, 2003, 23(S1):35-37. [BAO Shihai, ZHANG Xiuping, YANG Yufeng, et al. Gas potential identification of the oolitic beach reservoirs in Feixianguan Formation in the North part of East Sichuan [J]. Natural Gas Industry, 2003, 23(S1): 35-37.
    [29] 谢芳, 李志荣, 肖富森, 等. 四川盆地东北部飞仙关组鲕滩储层地震预测技术[J]. 天然气工业, 2004, 24(1):34-36. [XIE Fang, LI Zhirong, XIAO Fuseng, et al. Prediction technique for the oolitic beach reservoir of Feixianguan formation in the Northeast of Sichuan Basin by using seismic data [J]. Natural Gas Industry, 2004, 24(1): 34-36. doi: 10.3321/j.issn:1000-0976.2004.01.011
    [30] 马灵伟, 顾汉明, 赵迎月, 等. 应用随机介质正演模拟刻画深水区台缘礁碳酸盐岩储层[J]. 石油地球物理勘探, 2013, 48(4):583-590. [MA Lingwei, GU Hanming, ZHAO Yingyue, et al. Sculpturing platform-edge reef carbonate reservoirs in deep-water with random media forward modeling [J]. Oil Geophysical Prospecting, 2013, 48(4): 583-590.
    [31] 汪晴川, 李瑞, 蒲平文, 等. 川东长兴组生物礁分布地震识别技术研究[J]. 物探化探计算技术, 2008, 30(4):282-287. [WANG Qingchuan, LI Rui, PU Pingwen, et al. Research of the Changxing organic reef distributed and seismic recognition techniques, East Sichuan Basin [J]. Computing Techniques for Geophysical and Geochemical Exploration, 2008, 30(4): 282-287. doi: 10.3969/j.issn.1001-1749.2008.04.005
    [32] 蒋晓迪, 朱仕军, 张光荣, 等. 四川盆地蜀南地区茅口组储层预测研究[J]. 天然气勘探与开发, 2014, 37(1):37-40, 44. [JIANG Xiaodi, ZHU Shijun, ZHANG Guangrong, et al. Reservoir prediction of Maokou Formation, southern Sichuan Basin [J]. Natural Gas Exploration & Development, 2014, 37(1): 37-40, 44. doi: 10.3969/j.issn.1673-3177.2014.01.009
    [33] 刘国萍, 游瑜春, 冯琼, 等. 元坝长兴组生物礁储层精细雕刻技术[J]. 石油地球物理勘探, 2017, 52(3):583-590. [LIU Guoping, YOU Yuchun, FENG Qiong, et al. Fine depict of reef reservoirs in Changxing Formation, Yuanba area [J]. Oil Geophysical Prospecting, 2017, 52(3): 583-590.
    [34] 马永生, 郭旭升, 凡睿. 川东北普光气田飞仙关组鲕滩储集层预测[J]. 石油勘探与开发, 2005, 32(4):60-64. [MA Yongsheng, GUO Xusheng, FAN Rui. Reservoir prediction of Feixianguan Formation in Puguang gas field, Northeast Sichuan province [J]. Petroleum Exploration and Development, 2005, 32(4): 60-64. doi: 10.3321/j.issn:1000-0747.2005.04.010
    [35] 王伟, 胡明毅, 胡忠贵, 等. 建南地区长兴组碳酸盐岩礁滩储层波阻抗反演预测[J]. 科学技术与工程, 2013, 13(34):10272-10278, 10288. [WANG Wei, HU Mingyi, HU Zhonggui, et al. The prediction of wave impedance inversion in carbonate reef flat reservoir of Changxing Formation in Jiannan area [J]. Science Technology and Engineering, 2013, 13(34): 10272-10278, 10288. doi: 10.3969/j.issn.1671-1815.2013.34.032
    [36] 杜浩坤, 蔡其新, 肖斌, 等. 普光地区中三叠统雷口坡组顶部储层分布预测[J]. 石油地球物理勘探, 2017, 52(6):1269-1279. [DU Haokun, CAI Qixin, XIAO Bin, et al. Reservoir distribution prediction on the top of Middle Triassic Leikoupo Formation in Puguang area [J]. Oil Geophysical Prospecting, 2017, 52(6): 1269-1279.
    [37] 靳秀菊, 侯加根, 刘红磊, 等. 普光气田礁滩相复杂孔隙类型储集层渗透率地震预测方法[J]. 古地理学报, 2016, 18(2):275-284. [JIN Xiuju, HOU Jiagen, LIU Honglei, et al. Seismic prediction method of permeability of reef bank reservoir with complex pore types in Puguang gasfield [J]. Journal of Palaeogeography, 2016, 18(2): 275-284. doi: 10.7605/gdlxb.2016.02.021
    [38] 吕其彪, 吴清杰, 毕有益. 高分辨率地震解释预测礁滩相储集层[J]. 新疆石油地质, 2012, 33(5):557-559. [LV Qibiao, WU Qingjie, BI Youyi. Prediction of reep-flat reservoir using high resolution seismic interpretation [J]. Xinjiang Petroleum Geology, 2012, 33(5): 557-559.
    [39] 张光荣, 张旋, 喻颐, 等. 四川盆地深层海相碳酸盐岩缝洞型储层预测关键技术——以SN地区茅口组为例[J]. 天然气地球科学, 2017, 28(8):1235-1242. [ZHANG Guangrong, ZHANG Xuan, YU Yi, et al. Key techniques for prediction of fractured carbonate reservoirs in deep marine carbonate rocks in Sichuan Basin: a case study of the Maokou Formation in SN area [J]. Natural Gas Geoscience, 2017, 28(8): 1235-1242.
    [40] 王浩, 马如辉, 陈志强, 等. 川东北元坝气田长兴组生物礁精细刻画及储层预测[J]. 长江大学学报: 自然科学版, 2019, 16(2):21-26. [WANG Hao, MA Ruhui, CHEN Zhiqiang, et al. Fine characterization of reefs and reservoir prediction of Changxing Formation in Yuanba gas field of northeastern Sichuan Basin [J]. Journal of Yangtze University: Natural Science Edition, 2019, 16(2): 21-26.
    [41] 冯凯, 陈祖庆, 查朝阳. 基于叠前地震资料预测碳酸盐岩复合岩性油气藏——以川东飞仙关组气藏储层为例[J]. 大庆石油地质与开发, 2006, 25(5):96-99. [FENG Kai, CHEN Zuqing, ZHA Chaoyang. Carbonate complex lithologicl hydrocarbon reservoir forecast based on pre-stack seismic data- with gas reservoir in Feixianguan formation in East Sichuan as an example [J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(5): 96-99. doi: 10.3969/j.issn.1000-3754.2006.05.027
    [42] 陈祖庆, 屈大鹏, 缪志伟. 元坝地区长兴组超深层礁滩储层地震预测[J]. 中国西部科技, 2015, 14(7):20-26. [CHEN Zuqing, QU Dapeng, MIAO Zhiwei. Seismic prediction of deep reef-bank reservoirs in the Changxing Formation in the YB area [J]. Science and Technology of West China, 2015, 14(7): 20-26. doi: 10.3969/j.issn.1671-6396.2015.07.007
    [43] 李金磊, 陈祖庆, 王良军, 等. 相控技术在低勘探区生屑滩相储层预测中的应用[J]. 岩性油气藏, 2017, 29(3):110-117. [LI Jinlei, CHEN Zuqing, WANG Liangjun, et al. Application of facies-controlled technique to bioclastic shoal reservoir prediction in less well zones [J]. Lithologic Reservoirs, 2017, 29(3): 110-117. doi: 10.3969/j.issn.1673-8926.2017.03.013
    [44] 纪学武, 张延庆, 臧殿光, 等. 四川龙岗西区碳酸盐岩礁、滩体识别技术[J]. 石油地球物理勘探, 2012, 47(2):309-314. [JI Xuewu, ZHANG Yanqing, ZANG Dianguang, et al. Carbonate reef- shoal reservoir identification in western Longgang, Sichuan Basin [J]. Oil Geophysical Prospecting, 2012, 47(2): 309-314.
    [45] 盛秋红, 张金明. 基于反褶积短时傅里叶变换的薄储层流体识别——以元坝为例[J]. 科学技术与工程, 2016, 16(15):41-46. [SHENG Qiuhong, ZHANG Jinming. Identification of fluid based on deconvolution short-time Fourier transform- taking Yuanba area as an example [J]. Science Technology and Engineering, 2016, 16(15): 41-46. doi: 10.3969/j.issn.1671-1815.2016.15.007
    [46] 黄花香, 邓瑛, 吴战培, 等. 吸收系数反演在川东碳酸盐岩储层预测中的应用[J]. 石油物探, 2003, 42(1):86-88. [HUANG Huaxiang, DENG Ying, WU Zhanpei, et al. Application of absorption coefficient inversion in prediction of Carbonate reservoir in the East of Sichuan [J]. Geophysical Prospecting for Petroleum, 2003, 42(1): 86-88. doi: 10.3969/j.issn.1000-1441.2003.01.019
    [47] 陈勇, 陈洪德, 关达, 等. 地震技术在碳酸盐岩生物礁油气储层流体识别中的应用[J]. 科学技术与工程, 2013, 13(21):6208-6215. [CHEN Yong, CHEN Hongde, GUAN Da, et al. The application of seismic technology in fluid discrimination of Carbonation reef oil and gas reservoir [J]. Science Technology and Engineering, 2013, 13(21): 6208-6215. doi: 10.3969/j.issn.1671-1815.2013.21.029
    [48] 杨子川, 高利君, 李海英. 匹配追踪时频分析技术在塔河油田缝洞型储层预测中的应用[J]. 地质科技情报, 2017, 36(3):293-298. [YANG Zichuan, GAO Lijun, LI Haiying. Match pursuit time-frequency analysis technology in the prediction of fractured reservoirs in Tahe oilfield [J]. Geological Science and Technology Information, 2017, 36(3): 293-298.
    [49] 吴淑玉, 陈建文, 刘俊, 等. 南黄海横波测井曲线预测在叠前反演中的应用[J]. 海洋地质前沿, 2016, 32(10):51-59. [WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of S-wave well longing predicted for prestack inversion in the South Yellow Sea Basin [J]. Marine geology Frontiers, 2016, 32(10): 51-59.
    [50] 吴淑玉, 刘俊, 肖国林, 等. 地震多属性预测技术在南黄海二叠系至三叠系沉积分析中的应用[J]. 海洋地质与第四纪地质, 2011, 31(5):109-116. [WU Shuyu, LIU Jun, XIAO Guolin, et al. Application of seismic attribute analysis to The Permian-Triassic Deposits in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 109-116.
    [51] 袁勇, 陈建文, 梁杰, 等. 应用多属性聚类分析方法研究南黄海盆地二叠系沉积特征[J]. 海洋地质前沿, 2016, 32(10):44-50. [YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Application of multiple attributes cluster analysis to Permian Deposits in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 44-50.
    [52] 吴淑玉, 陈建文, 刘俊, 等. 叠前同时反演技术在南黄海崂山隆起储层预测中的应用[J]. 海洋地质与第四纪地质, 2018, 38(3):162-174. [WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of pre-stack simultaneous inversion in the reservoir prediction in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 162-174.
    [53] 刘俊, 陈建文, 吴淑玉, 等. 南黄海崂山隆起石炭系-下二叠统海相碳酸盐岩叠前三参数反演储层预测[J]. 海洋地质与第四纪地质, 2018, 38(3):186-198. [LIU Jun, CHEN Jianwen, WU Shuyu, et al. Prestack three-term seismic inversion for prediction of Carboniferous-Lower Permian carbonate reservoir on the Central Uplift of South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 186-198.
    [54] Wu S Y, Liu J, Chen J W, et al. Pre-stack simultaneous inversion in the marine carbonate reservoir prediction of the South Yellow Sea Basin, China [J]. Acta Geologica Sinica, 2019, 93(S2): 420-421.
    [55] 张晓华, 张训华, 吴志强, 等. 谱分解在南黄海中部隆起中-古生界储层预测中的应用[J]. 海洋学报, 2017, 39(7):102-109. [ZHANG Xiaohua, ZHANG Xunhua, WU Zhiqiang, et al. Application of spectral decomposition to detect Mesozoic- Paleozoic reservoir on the Central uplift of the South Yellow Sea Basin [J]. Acta Oceanologica Sinica, 2017, 39(7): 102-109.
    [56] 王建强, 陈建文, 梁杰, 等. 频谱分解技术在南黄海崂山隆起的应用[J]. 海洋地质前沿, 2016, 32(10):38-43. [WANG Jianqiang, CHEN Jianwen, LIANG Jie, et al. Application of spectrum decomposition to the Laoshan uplift, South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(10): 38-43.
    [57] 张训华, 郭兴伟, 吴志强, 等. 南黄海盆地中部隆起CSDP-2井初步成果及其地质意义[J]. 地球物理学报, 2019, 62(1):197-218. [ZHANG Xunhua, GUO Xingwei, WU Zhiqiang, et al. Preliminary results and geological significance of well CSDP-2 in the Central Uplift of South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2019, 62(1): 197-218. doi: 10.6038/cjg2019L0233
    [58] 郭兴伟, 张训华, 吴志强, 等. 大陆架科学钻探CSDP-2井科学目标及初步成果[J]. 吉林大学学报: 地球科学版, 2019, 49(1):1-12. [GUO Xingwei, ZHANG Xunhua, WU Zhiqiang, et al. Scientific objectives and preliminary progresses of CSDP-2 well in continental shelf drilling program [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 1-12.
    [59] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70. [CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. The inclusion evidence of multi-phase hydrocarbon accumulation in the South Yellow sea [J]. Marine Geology Frontiers, 2018, 34(2): 69-70.
    [60] 陈建文. 南黄海崂山隆起海相中—古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70. [CHEN Jianwen. Many large traps are found in the Mesozoic-Paleozoic marine facies of Laoshan Uplift in the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(4): 69-70.
    [61] Liang J, Chen J W, Zhang Y G, et al. New evidence of Silurian hydrocarbon accumulation is discovered by fluid inclusion analysis in the South Yellow Sea Basin [J]. China Geology, 2019, 2(1): 110-111. doi: 10.31035/cg2018077
    [62] 李双应, 金福全. 下扬子盆地石炭纪的古地理[J]. 合肥工业大学学报: 自然科学版, 1994, 17(3):167-174. [LI Shuangying, JIN Fuquan. Carboniferous paleography in the Lower Yangzi Basin [J]. Journal of Hefei University of Technology, 1994, 17(3): 167-174.
    [63] 冯增昭, 何幼斌, 吴胜和. 中下扬子地区二叠纪岩相古地理[J]. 沉积学报, 1993, 11(3):13-24. [FENG Zengzhao, HE Youbin, WU Shenghe. Listhofacies paleogeography of Permian Middle and Lower Yangtze region [J]. Acta Sedimentologica Sinica, 1993, 11(3): 13-24.
    [64] 王成善, 李祥辉, 陈洪德, 等. 中国南方二叠纪海平面变化及升降事件[J]. 沉积学报, 1999, 17(4):536-541. [WANG Chengshan, LI Xianghui, CHEN Hongde, et al. Permian sea- level changes and rising- falling events in South China [J]. Acta Sedimentologica Sinica, 1999, 17(4): 536-541.
    [65] 陈华成, 王云慧, 严幼因. 江苏及安徽南部早石炭世地层[J]. 地层学杂志, 1979, 3(4):242-250. [CHEN Huacheng, WANG Yunhui, YAN Youyin. Early Carboniferous strata in the South of Jiangsu and Anhui [J]. Acta Stratigraphica Sinica, 1979, 3(4): 242-250.
    [66] 胡芬. 南黄海盆地海相中、古生界油气资源潜力研究[J]. 海洋石油, 2010, 30(3):1-8, 77. [HU Fen. Hydrocarbon resources potential study in Mesozoic-Palaeozoic marine strata in the South Yellow Sea Basin [J]. Offshore Oil, 2010, 30(3): 1-8, 77. doi: 10.3969/j.issn.1008-2336.2010.03.001
    [67] 张雨琦, 郭萌萌, 张志鹏, 等. 川东地区石炭系碳酸盐岩储层成因机理及主控因素研究[J]. 地球科学前沿, 2014, 4(4):189-197. [ZHANG Yuqi, GUO Mengmeng, ZHANG Zhipeng, et al. Genetic mechanism and main control factors of Carboniferous carbonate reservoirs in eastern Sichuan Basin [J]. Advances in Geosciences, 2014, 4(4): 189-197. doi: 10.12677/AG.2014.44023
    [68] 高小惠, 张训华, 蔡来星, 等. 南黄海盆地中部隆起CSDP-2井志留系——石炭系岩石学特征及其沉积相[J]. 吉林大学学报: 地球科学版, 2019, 49(1):53-64. [GAO Xiaohui, ZHANG Xunhua, CAI Laixing, et al. Silurian-Carboniferous petrographic features and depositional facies in the well CSDP-2 in the Central Uplift of the South Yellow Sea Basin [J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1): 53-64.
    [69] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中-古生界沉积相及烃源岩特征——以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046. [CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in central uplift of South Yellow Sea: a case study of CSDP-2 coring well [J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4): 1030-1046.
    [70] 王正和, 郭彤楼, 谭钦银, 等. 四川盆地东北部长兴组-飞仙关组各沉积相带储层特征[J]. 石油与天然气地质, 2011, 32(1):56-63. [WANG Zhenghe, GUO Tonglou, TAN Qinyin, et al. Reservoir characteristics of different sedimentary facies in the Changxing and Feixianguan Formations, Northeast of the Sichuan Basin [J]. Oil & Gas Geology, 2011, 32(1): 56-63. doi: 10.11743/ogg20110107
    [71] 李昌峰, 侯明才, 张小青, 等. 川东北元坝地区上二叠统长兴组优质储层形成机制[J]. 地质力学学报, 2015, 21(2):278-289. [LI Changfeng, HOU Mingcai, ZHANG Xiaoqing, et al. Formation mechanism of high-quality reservoirs in the Upper Permian Changxing Formation in Yuanba gas field, northeastern Sichuan Basin [J]. Journal of Geomechanics, 2015, 21(2): 278-289. doi: 10.3969/j.issn.1006-6616.2015.02.018
    [72] 万晓明, 梁劲, 梁金强, 等. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3):438-444. [WAN Xiaoming, LIANG Jing, LIANG Jinqiang, et al. The application of post-stack impedance inversion without well to the prediction of gas hydrate distribution in T study area [J]. Geophysical and Geochemical Exploration, 2016, 40(3): 438-444. doi: 10.11720/wtyht.2016.3.2
    [73] 张江华, 林承焰, 惠俊刚, 等. 影响约束地震反演品质的因素分析[J]. 西北大学学报: 自然科学版, 2008, 38(4):627-630. [ZHANG Jianghua, LIN Chengyan, HUI Jungang, et al. Analysis on factors affecting quality of logging constraint inversion [J]. Journal of Northwest University: Natural Science Edition, 2008, 38(4): 627-630.
    [74] 陈春峰, 施剑, 徐东浩, 等. 南黄海崂山隆起形成演化及对油气成藏的影响[J]. 海洋地质与第四纪地质, 2018, 38(3):55-65. [CHEN Chunfeng, SHI Jian, XU Donghao, et al. Formation and tectonic evolution of Laoshan Uplift of South Yellow Sea Basin and its effect on hydrocarbon accumulation [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 55-65.
  • [1] 李双林, 董贺平, 王建强, 赵青芳.  南黄海盆地崂山隆起中南部海域油气目标地球化学探测:海底油气渗漏与双环状地球化学异常 . 海洋地质与第四纪地质, 2020, 40(2): 135-147. doi: 10.16562/j.cnki.0256-1492.2019101001
    [2] 刘俊, 陈建文, 吴淑玉, 张银国, 施剑, 刘鸿, 苑春方.  南黄海崂山隆起石炭系-下二叠统海相碳酸盐岩叠前三参数反演储层预测 . 海洋地质与第四纪地质, 2018, 38(3): 186-198. doi: 10.16562/j.cnki.0256-1492.2018.03.018
    [3] 吴淑玉, 陈建文, 刘俊, 张银国, 梁杰, 袁勇, 陈春峰, 许明, 张玉玺.  叠前同时反演技术在南黄海崂山隆起储层预测中的应用 . 海洋地质与第四纪地质, 2018, 38(3): 162-174. doi: 10.16562/j.cnki.0256-1492.2018.03.016
    [4] 姚刚.  高精度电缆采集系统在南黄海崂山隆起油气调查中的应用 . 海洋地质与第四纪地质, 2018, 38(3): 152-161. doi: 10.16562/j.cnki.0256-1492.2018.03.015
    [5] 张异彪, 李玉剑, 陈建文, 李斌, 刘璐晨, 黄涛, 施剑, 刘俊.  南黄海崂山隆起地震采集参数设计 . 海洋地质与第四纪地质, 2018, 38(3): 143-151. doi: 10.16562/j.cnki.0256-1492.2018.03.014
    [6] 王建强, 龚建明, 张莉, 成海燕, 廖晶, 陈建文, 孙晶, 杨传胜.  南黄海盆地“三明治”结构的页岩气保存条件探讨 . 海洋地质与第四纪地质, 2018, 38(3): 134-142. doi: 10.16562/j.cnki.0256-1492.2018.03.013
    [7] 许振强, 梁杰, 陈建文, 张鹏辉, 张银国, 王建强, 雷宝华, 杨传胜.  南黄海崂山隆起中、古生界油气保存条件分析 . 海洋地质与第四纪地质, 2018, 38(3): 125-133. doi: 10.16562/j.cnki.0256-1492.2018.03.012
    [8] 陈春峰, 施剑, 徐东浩, 张银国, 张伯成, 王军.  南黄海崂山隆起形成演化及对油气成藏的影响 . 海洋地质与第四纪地质, 2018, 38(3): 55-65. doi: 10.16562/j.cnki.0256-1492.2018.03.005
    [9] 郭兴伟, 朱晓青, 牟林, 徐扬, 庞玉茂, 蔡来星, 张训华, 刘健, 卢辉楠.  南黄海中部隆起二叠纪-三叠纪菊石的发现及其意义 . 海洋地质与第四纪地质, 2017, 37(3): 121-128. doi: 10.16562/j.cnki.0256-1492.2017.03.012
    [10] 刘俊, 吴淑玉, 陈建文, 施剑, 雷宝华.  南黄海崂山隆起浅水多次波压制及成像分析 . 海洋地质与第四纪地质, 2017, 37(3): 111-119. doi: 10.16562/j.cnki.0256-1492.2017.03.011
    [11] 刘金萍, 王嘹亮, 简晓玲, 万晓明, 赵然, 成谷.  叠前同步反演技术在北黄海盆地中生界储层预测中的应用 . 海洋地质与第四纪地质, 2015, 35(4): 141-148. doi: 10.16562/j.cnki.0256-1492.2015.04.015
    [12] 吴其林, 黄思静, 但志伟, 肖为, 曾驿, 周小康, 侯志平.  珠江口盆地惠州地区A区块碳酸盐岩油气储层预测 . 海洋地质与第四纪地质, 2015, 35(2): 149-155. doi: 10.3724/SP.J.1140.2015.02149
    [13] 龚建明, 王建强, 李小豫, 王蛟, 陈建文, 杨艳秋, 李刚, 蒋玉波.  南黄海崂山隆起古生界页岩气远景区 . 海洋地质与第四纪地质, 2013, 33(6): 115-120. doi: 10.3724/SP.J.1140.2013.06115
    [14] 闫桂京, 李慧君, 何玉华, 吴志强.  南黄海海相层石油地质条件分析与勘探方向 . 海洋地质与第四纪地质, 2012, 32(5): 107-113. doi: 10.3724/SP.J.1140.2012.05107
    [15] 吴淑玉, 刘俊, 肖国林, 张银国, 赵铁虎.  地震多属性预测技术在南黄海二叠系至三叠系沉积分析中的应用 . 海洋地质与第四纪地质, 2011, 31(5): 109-116. doi: 10.3724/SP.J.1140.2011.05109
    [16] 王丰, 李慧君, 张银国.  南黄海崂山隆起地层属性及油气地质 . 海洋地质与第四纪地质, 2010, 30(2): 95-102. doi: 10.3724/SP.J.1140.2010.02095
    [17] 宫健, 许淑梅, 马云, 于建国, 王金铎.  基于地震属性的储层预测方法——以永安地区永3区块沙河街组二段为例 . 海洋地质与第四纪地质, 2009, 29(6): 95-102. doi: 10.3724/SP.J.1140.2009.06095
    [18] 张海啟, 陈建文, 李刚, 吴志强, 张银国.  地震调查在南黄海崂山隆起的发现及其石油地质意义 . 海洋地质与第四纪地质, 2009, 29(3): 107-113. doi: 10.3724/SP.J.1140.2009.03107
    [19] 欧阳凯, 张训华, 李刚.  南黄海中部隆起地层分布特征 . 海洋地质与第四纪地质, 2009, 29(1): 59-66. doi: 10.3724/SP.J.1140.2009.01059
    [20] 龚建明, 陈建文, 何拥军, 闫桂京, 李武, 张志珣.  低层大气烃类检测预测南黄海盆地油气远景 . 海洋地质与第四纪地质, 2006, 26(1): 75-79.
  • 加载中
图(10)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  39
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 修回日期:  2020-04-22
  • 刊出日期:  2020-10-01

南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测

doi: 10.16562/j.cnki.0256-1492.2020031701
    作者简介:

    吴淑玉(1985—),女,在读博士,副研究员,主要从事地震资料解释和反演工作,E-mail:hnwushuyu@163.com

    通讯作者: 刘俊(1978—),男,博士,高级工程师,从事海洋地球物理处理工作,E-mail:vnlj@163.com
基金项目:  青岛市市南区科技发展资金项目“南黄海中—古生界海相碳酸盐岩储层叠前反演研究”(2016-3-009-ZH);国家海洋局海底重点实验室基金“台西南盆地沉积基底特征和莫霍面构造形态综合地球物理研究”(KLSG1603);中国地质调查项目“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152),“海岸带和大陆架地质演化调查与评价”(DD20160147)
  • 中图分类号: P736

摘要: 海相碳酸盐岩储层是南黄海盆地崂山隆起中—古生界重要的油气储层,由于钻井少,储层非均质性强,地震储层预测研究是油气勘探的重点和难点。以南黄海石炭系—下二叠统碳酸盐岩为例,通过分析CSDP-2井生物碎屑灰岩储层的岩石物性及井-震响应特征,发现生物碎屑灰岩声波阻抗高于纯灰岩以及碎屑岩的声波阻抗,低λρ具有较好的岩石物性特征,针对这种特点,采用叠前同时反演方法对孔隙型碳酸盐岩储层的岩性和物性进行预测。预测结果表明南黄海崂山隆起石炭系—下二叠统生物碎屑灰岩储层比较发育,横向不连续且具有较强的非均质性,位于古高地储层物性发育较好,其成因是由于受印支构造运动,上覆地层抬升到地表遭到暴露,加上淡水淋滤溶蚀作用,在一定程度上提高了碳酸盐岩储层的次生孔隙,形成了钻井岩心所揭示的储层特征,因此,高孔隙度的孔隙型碳酸盐岩是南黄海石炭系—下二叠统油气勘探的首选目标。

English Abstract

  • 碳酸盐岩油气田是全球油气最重要的组成部分,其常规油气储量约占全球油气总储量的60%,产量约占50%[1]。中国海相碳酸盐岩经历了40多年的油气勘探,随着上扬子四川盆地威远、普光、龙岗和元坝等多个大型碳酸盐岩油气田的发现,证明碳酸盐岩是扬子区油气开采的重要领域之一[2-4]。南黄海盆地是下扬子板块向东延伸的主体,为前震旦纪变质岩基底之上的一个多旋回叠合盆地,与四川盆地具有相似的地质结构和演化历史,但同时又具有其自身的特点[5-8],其油气勘探一直是海洋石油地质学家和地球物理学家关注的焦点[9-12]。南黄海盆地经过多年的油气勘探,始终没有获得油气的重要发现,为目前我国近海海域唯一一个尚未获得油气突破的大型沉积盆地[13-16]

    海域已有钻井证实南黄海崂山隆起中—古生代地层发育多套海相碳酸盐岩,但由于印支、燕山构造运动对中—古生界原型沉积的改造,中—古生代地层构造特征复杂,加上碳酸盐岩储层非均质性强,因此,碳酸盐岩储层预测是南黄海油气勘探的重点和难点[17-18]

    碳酸盐岩储层包括孔隙型、裂缝型和孔隙-裂缝复合型,孔隙型碳酸盐岩储层包括礁滩相和白云岩型,礁滩相储层主要以川东北普光和元坝油气田的长兴组-飞仙关组礁滩[19]以及南海的古、新近纪生物礁为例[20];白云岩储层以川中下寒武统龙王庙组为例[21-22]。对于礁滩相碳酸盐岩储层预测,许多学者通过对碳酸盐岩进行岩石物理分析,认为其基质具有非均质性且孔隙结构多变的特点,同时提出不同的岩石物理模型进行流体替换,从而获得碳酸盐岩在不同条件下的纵横波速度和各向异性特征[23-27],此外通过AVO正演模拟发现碳酸盐岩储层中的孔隙性和含油气性差异可以引起明显的AVO异常[28-30]。随着近几年地球物理技术的发展,碳酸盐岩储层预测技术从地震属性分析[31-33]发展到叠后波阻抗反演[34-36]、叠前统计学反演[37-40]、叠前同时反演方法[41]以及相控约束下的地震反演方法等[42-44],这些方法在碳酸盐岩储层预测中均得到了较好的应用。另外,时频分析方法也逐渐应用于碳酸盐岩的含油气预测研究[45-47],尤其是对复合型储层的含油气性预测得到了很好的验证[48]

    关于南黄海碳酸盐岩储层预测方面研究,前人运用岩石物理分析[49]、地震属性分析[50-51]、叠前反演[52-54]和时频分析[55-56]等方法开展了储层特征相关的研究工作,但鲜有对孔隙型碳酸盐岩储层做系统分析和预测,且目的层没有聚焦。本文利用钻遇石炭系—下二叠统的测井资料和研究区的地震资料,通过分析南黄海石炭系—下二叠统孔隙型碳酸盐岩储层特征,结合岩心资料的岩石物理分析,提取孔隙型碳酸盐岩的岩性和物性敏感弹性参数,运用叠前同时反演方法对崂山隆起孔隙型碳酸盐岩储层进行预测,预测了有利储层的分布特征,并对其进行了分析。

    • 南黄海盆地面积18万km2,现今盆地的构造格局南以勿南沙隆起、北以千里岩隆起为界,盆地从南到北可以划分为青岛坳陷、崂山隆起和烟台坳陷3个二级构造单元(图1[13, 52]。盆地进行了7.8×104 km的二维地震测量,4口井钻遇石炭系—下二叠统,如CZ35-2-1井、CZ12-1-1井、WX13-3-1井和CSDP-2井[11, 57-58],其中CSDP-2井在石炭系—下二叠统碳酸盐岩见油气显示,岩心样品中也发现了大量的油气包裹体,说明南黄海石炭系—下二叠统碳酸盐岩地层具备一定的油气潜力[11, 59-61]

      图  1  南黄海盆地构造单元[53]

      Figure 1.  The tectonic map of the South Yellow Sea Basin (modified from reference[53])

      早石炭世的全球海侵使下扬子板块与华夏板块形成了巨大的碳酸盐岩台地,直至船山组末期海退结束。石炭纪—二叠纪时期,下扬子板块位于北半球低纬度地区,为热带温暖湿润气候,大气降水充沛,有利于碳酸盐岩沉积[62-64]图2a)。早石炭世初期(金陵组和高骊山组),地层沉积较薄,主要为碎屑岩[65]图2b);早石炭世晚期盆地开始沉降,海水从盆地东、西两面入侵,和州组期间南黄海盆地由东向西沉积,呈NNE向浅水陆棚相和潮坪-潟湖相,岩性以灰岩和白云质灰岩为主;晚石炭世初期海侵规模最大,扬子海与华南海几乎连成一片,普遍为浅海相碳酸盐岩沉积环境,岩性为致密纯灰岩,南黄海盆地从东向西沉积了NE向开阔台地相、局限台地相及潮坪相。黄龙末期整体抬升,露出水面,部分地层遭受剥蚀,黄龙组与上覆船山组呈假整合接触。晚石炭世船山组初期,海水再次入侵,沉积整体向SE迁移,南黄海盆地从东向西沉积了呈近似NE向的开阔台地相、局限台地相及潮坪相,在局部高地发育了生物礁滩相。早二叠世栖霞期为晚古生代以来最大的一次海侵期,普遍沉积了富含䗴类、珊瑚、有孔虫和钙藻为主的生物碎屑灰岩,形成了稳定岩相和厚度的南方巨型碳酸盐岩[66],早二叠世晚期,下扬子区开始海退,全区大部分转变为海陆交替的三角洲和潟湖海湾沉积,结束了海相沉积历史。

      图  2  沉积相、岩性和地震解释剖面综合分析

      Figure 2.  Integrated profiles of sedimentary facies,lithology and seismic interpretation

      石炭系—下二叠统在地震反射剖面上为T10- T11之间的一套反射层,T10为顶面,表现为一套中—低频强波峰的反射,T11为底面,表现为中— 低频强波谷的反射,T10与T11反射界面呈平行反射特征(图2c),顶底之间时间差为200~260 ms,地层厚度为550~715 m,内部整体为较连续、中频、中振幅、平行—亚平行的反射结构,局部存在丘状反射,说明地层厚度整体比较稳定、分布广泛,由于受到后期印支运动的影响,局部高部位被剥蚀。

    • 南黄海孔隙型碳酸盐岩储层形成于高能沉积环境,常见核形石、鲕粒或生物碎屑灰岩[67]。崂山隆起CSDP-2井揭示上石炭统船山组1724.7~1757.78 m和1762~1792.4 m发育大量的灰色—深灰色生物碎屑灰岩,根据岩心观察,储层为晶间孔、粒内孔和生物碎屑溶蚀孔,解释为台内滩相[3, 68-69],藻灰岩孔隙度为0.56%~12%,平均5.61%,渗透率小于0.01 mD(图3)。位于青岛坳陷的CZ12-1-1井在石炭系同样发育生物碎屑灰岩储层,厚133 m,船山组中—下部由褐灰色藻团细粉晶灰岩、深灰色含生物粉晶灰岩组成,上部为浅灰色生物藻团粉晶灰岩、灰色生物细碎屑粉晶灰岩、泥晶灰岩和含燧石灰岩,生物碎屑灰岩孔隙度为8%~14%,平均为10.6%,渗透率为1~4.2 mD,平均为2.13 mD。对比四川盆地的碳酸盐岩岩石物性[70-71],南黄海盆地石炭系碳酸盐岩储层的孔、渗物性条件较好。

      图  3  CSDP-2井上石炭统船山组生物碎屑灰岩柱状图和岩心照片

      Figure 3.  The lithologic column and core photographs of upper Carboniferous Chuanshan Formation of Well CSDP-2

    • 以青岛坳陷的CZ12-1-1井为例,分析以生物碎屑灰岩为典型代表的井- 震响应特征,该井在上石炭统船山组中揭示了137 m厚的生物碎屑灰岩,其速度为5 000~6 000 m/s,密度为2.3~2.6 g/cm3,纵波阻抗为16 000~17 000 g/cm3·m/s,位于船山组上部的始新统碎屑岩地层速度为2 300~3 000 m/s,密度为2.2~2.3 g/cm3,阻抗为5 500~6 200 g/cm3·m/s,由于受逆断层的影响,下部夹杂二叠系梁山组薄层碎屑岩,其速度为3 000~4 000 m/s,密度为2.2~2.4 g/cm3,阻抗为7 000~8 000 g/cm3·m/s,可见船山组生物碎屑灰岩相对碎屑岩地层为高速高阻抗的曲线特征,与下部的黄龙组等灰岩地层的阻抗差异较小。在地震剖面上,船山组顶部的生物碎屑灰岩为强振幅连续反射,内部为断续—较连续的强反射特征,船山组与上部始新统和下部的梁山组碎屑岩之间形成2个波峰和1个波谷的强反射,其下部和州组和黄龙组的灰岩内幕为较连续— 断续反射特征(图4)。

      图  4  CZ12-1-1井测井曲线和地震响应特征

      Figure 4.  Logging and seismic characteristic of Well CZ12-1-1

    • 利用CSDP-2井岩心实测的纵波阻抗与横波阻抗进行交汇分析(图5),纵波阻抗可以较好地区分岩性变化,能够统计出砂岩和灰岩的纵波阻抗分布范围,其中砂泥岩的纵波阻抗为10000~14500 g/cm3·m/s;纯灰岩纵波阻抗为13800~16300 g/cm3·m/s,生物碎屑灰岩的纵波阻抗为16300~17500 g/cm3·m/s,表明纵波阻抗能够区分碎屑岩、纯灰岩和生物碎屑灰岩,因此纵波阻抗成为岩性区分的敏感弹性参数。

      图  5  CSDP-2井岩性敏感参数交汇分析

      Figure 5.  Lithology- sensitive parameters from Well CSDP-2

      为获取储层的物性敏感弹性参数,将CSDP-2井实测的灰岩(包括纯灰岩和生物碎屑灰岩)孔隙度划分成不同等分,将纵波速度、横纵波速度及密度数据由岩石物理方程计算得到弹性参数,对弹性参数进行两两交汇分析,筛选对物性敏感的弹性参数,为下一步储层预测提供参考依据。由交汇分析可知,随着孔隙度的增加,拉梅常数λ和泊松比(图6a)、纵波阻抗和体积模量K图6b)、剪切模量μ和纵波速度Vp图6c)数值均呈减小趋势,单纯依靠这些弹性参数区分物性会有重叠,由图6d可以看出,低λρ(拉梅常数和密度乘积)和μρ(剪切模量和密度乘积)的灰岩具有好的物性,且两者的重叠区间相对较小,因此,本文选择λρ来判断储层物性好坏,将目的层段灰岩的λρ与孔隙度进行交会分析(图7),得到两者的线性关系φ=λρ×10−9+1.3052。

      图  6  CSDP-2井物性敏感参数交汇分析

      Figure 6.  Property sensitive parameters from Well CSDP-2

      图  7  CSDP-2井石炭系—下二叠统生物碎屑灰岩段的λρ与孔隙度拟合

      Figure 7.  Fitting relationship between λρ and porosity of bioclastic limestone from Carboniferous to Lower Permian of Well CSDP-2

    • 南黄海石炭系—下二叠统沉积相在横向上分布存在变化,因此其对应的岩性也存在变化,同时由于成岩作用和构造作用,碳酸盐岩储层的物性也会有所不同,需要根据研究区碳酸盐岩岩石物理特征,选择合适的地震反演方法,系统分析有利储层的分布范围。一般情况下,影响地震反演结果的因素主要为地质条件和针对性方法的选择,其中方法选择的关键因素主要有地震资料的品质、井震标定的子波提取、低频模型建立和反演过程参数的选取。因此采用合适的针对性技术手段和思路非常重要[72-73]。本文根据南黄海井点的岩石物理分析得到储层的岩性和物性敏感弹性参数,采用叠前同时反演方法进行石炭系—下二叠统的碳酸盐岩储层预测。具体反演过程为:首先根据不同角度道集的井震标定合成地震记录,获得井旁道远、中、近道集的地震子波;其次结合井点空间插值速度模型和高精度层析速度反演结果,建立低频速度模型;最后通过对优化后的CRP道集,采用叠前同时反演方法,对南黄海石炭系—下二叠统碳酸盐岩的岩性和物性进行预测,最终获得研究区孔隙型碳酸盐岩的有利储层分布特征,具体技术流程如图8

      图  8  南黄海叠前同时反演储层预测技术流程

      Figure 8.  Flow chart of pre-stack simultaneous inversion for reservoir prediction

    • 基于CSDP-2井测井曲线进行精细的合成地震记录分析,首先利用雷克子波进行初步的井震标定,然后根据实际井旁地震道提取最小相位子波及零相位子波分别制作合成记录,地震资料频谱为8~50 Hz,主频为25 Hz,通过合成地震记录,得到了全叠加子波,经过大量的合成记录对比分析,发现从该井井旁地震道提取的非零相位子波效果最佳。由图9a可以看出,CSDP-2井合成地震记录与实际地震道的匹配一致,说明提取的子波非常准确,进而确定了该井的时深关系。在此基础上,选取3个不同角度道集的部分叠加地震道集,通过远、中、近道集合成地震记录提取3个不同角度的子波,用于下一步叠前同时反演(图9b)。

      图  9  CSDP-2井合成地震记录及提取子波(a. 全叠加数据合成地震记录,b. 远、中、近叠加道集合成地震记录, c. 不同叠加道集提取的近、中、远角度子波,d. 不同角度提取子波的能量谱 )

      Figure 9.  The synthetic seismogram and extract wavelets of the Well CSDP-2(a. synthetic seismogram from full stack seismic, b. synthetic seismogram from far-mid-near stack seismic, c. wavelets extracted from far-mid-near synthetic seismogram, d. energy spectrum of wavelets extracted from different angles)

    • 海洋地震资料频谱普遍缺失8 Hz以下的数据信息,因此进行叠前同时反演时,需要根据纵波阻抗、横波阻抗和密度模型,来补全低频信息。首先对速度测井曲线空间插值,即通过精细的地层解释来建立地层格架,再进行井间曲线内插;其次将叠加速度谱的层析反演结果作为低频速度模型,将低频速度模型与井间插值结果两部分的模型进行叠加,从而得到低频纵波速度模型;最后对井点速度、纵横波阻抗以及密度统计结果进行拟合转换,最终得到纵波阻抗、横波阻抗和密度低频模型。

    • 地震阻抗反演的最终目的是半定量- 定量地预测碳酸盐岩的储层分布以及物性特征,本文通过分角度叠加地震道集资料,在纵波阻抗、横波阻抗和密度低频模型的约束下进行叠前同时反演,从而得到纵波阻抗的岩性数据和λρ的物性数据(图10a10b),根据岩石物理分析的结果,区分碎屑岩和灰岩的纵波阻抗门槛值为13500 g/cm3·m/s,区分生物碎屑灰岩和纯灰岩的纵波阻抗门槛值为16300 g/cm3·m/s,图10a中纵波阻抗值红色部分代表生物碎屑灰岩,黄色代表纯灰岩,蓝色代表碎屑岩。可以看出石炭系—下二叠统栖霞组生物碎屑灰岩储层比较发育,主要在石炭系和州组和船山组,以及下二叠统栖霞组局部分布。结合图10bλρ显示的物性剖面(3~6)×107(kg2/m2·s)为灰岩段有利物性储层,图中红黄色表示物性最优,绿、蓝色表示物性较好。根据波阻抗门槛值去掉碎屑岩和纯灰岩的阻抗范围,结合岩石物理分析结果,得到λρ与孔隙度的拟合关系(图7),最终得到孔隙型碳酸盐岩储层的孔隙度数据体(图10d),可以看出石炭系孔隙型碳酸盐岩储层表现出较强的非均质性,且横向分布具有一定的不连续性,位于北东方向古高地处物性较好,孔隙度较高,为7.5%~12.5%。

      图  10  叠前同时反演结果

      Figure 10.  Pre-stack simultaneous inversion results

    • 扬子板块石炭系—下二叠统的古纬度为1.6°S,位于赤道附近的热带海洋环境地带,温暖海水有利于碳酸盐岩发育[62]。这段时期南黄海盆地的水体较四川盆地深,因此孔隙型碳酸盐岩不像四川盆地大范围分布,仅发育于四周被广海陆棚或槽棚相所围限的碳酸盐岩台隆边缘。南黄海崂山隆起为加里东期之后的继承性古隆起[74],局部高地主要发育礁滩相台地,且礁滩体展布多受局部构造所控制,其形成常与古隆起和古断裂作用有关。此外台地边缘的张性断裂在地层缓慢的沉积过程中为生物礁的生长提供了可容空间和深部的营养成分。

      研究区碳酸盐岩沉积过程中存在较高的孔隙度,但由于地层的埋藏压实作用,原生孔隙均相继被充填,后期受印支运动作用,上覆地层被抬升到地表遭受暴露,在古高地附近的石炭系—下二叠统孔隙型碳酸盐岩发生大气淡水淋滤和溶蚀作用,使得次生孔隙发育,以溶孔、粒间、粒内孔为主的复杂组合为主。南黄海崂山隆起已有钻井CSDP-2井在石炭系船山组和黄龙组钻遇生物碎屑灰岩,且在该段地层岩心中多处见到油气显示,较好证明了石炭系—下二叠统的生物碎屑灰岩为有利储层段,因此寻找高孔隙性的孔隙型碳酸盐岩是研究区优选目标。

    • (1)根据井点岩石物理分析,声波阻抗为岩石敏感弹性参数,不仅能够区分碎屑岩和碳酸盐岩,而且能够区分生物碎屑灰岩和纯灰岩;λρ为物性敏感弹性参数,其具有随着孔隙度增高而减小的特点。

      (2)采用叠前同时反演方法对孔隙型碳酸盐岩储层预测,结果表明南黄海崂山隆起石炭系—下二叠统生物碎屑灰岩比较发育,纵向上主要发育在石炭系和州组和船山组,以及下二叠统栖霞组局部发育,横向上位于研究区北东方向古高地处物性较好,为7.5%~12.5%高孔隙度。

      (3)结合已有钻井碳酸盐岩岩心和盆地构造特征,分析认为受印支期构造运动影响,石炭系—下二叠统碳酸盐岩遭受淡水淋滤和溶蚀作用,次生孔隙比较发育,以溶孔、粒间、粒内的组合孔隙为主。

参考文献 (74)

目录

    /

    返回文章
    返回