留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲绳海槽海底冷泉-热液系统相互作用

吴能友 孙治雷 卢建国 蔡峰 曹红 耿威 罗敏 张喜林 李清 尚鲁宁 王利波 张现荣 徐翠玲 翟滨 李鑫 龚建明 胡钰 林根妹

吴能友, 孙治雷, 卢建国, 蔡峰, 曹红, 耿威, 罗敏, 张喜林, 李清, 尚鲁宁, 王利波, 张现荣, 徐翠玲, 翟滨, 李鑫, 龚建明, 胡钰, 林根妹. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5): 23-35. doi: 10.16562/j.cnki.0256-1492.2019070102
引用本文: 吴能友, 孙治雷, 卢建国, 蔡峰, 曹红, 耿威, 罗敏, 张喜林, 李清, 尚鲁宁, 王利波, 张现荣, 徐翠玲, 翟滨, 李鑫, 龚建明, 胡钰, 林根妹. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5): 23-35. doi: 10.16562/j.cnki.0256-1492.2019070102
WU Nengyou, SUN Zhilei, LU Jianguo, CAI Feng, CAO Hong, GENG Wei, LUO Min, ZHANG Xilin, LI Qing, SHANG Luning, WANG Libo, ZHANG Xianrong, XU Cuiling, ZHAI Bin, LI Xin, GONG Jianming, HU Yu, LIN Genmei. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35. doi: 10.16562/j.cnki.0256-1492.2019070102
Citation: WU Nengyou, SUN Zhilei, LU Jianguo, CAI Feng, CAO Hong, GENG Wei, LUO Min, ZHANG Xilin, LI Qing, SHANG Luning, WANG Libo, ZHANG Xianrong, XU Cuiling, ZHAI Bin, LI Xin, GONG Jianming, HU Yu, LIN Genmei. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35. doi: 10.16562/j.cnki.0256-1492.2019070102

冲绳海槽海底冷泉-热液系统相互作用


doi: 10.16562/j.cnki.0256-1492.2019070102
详细信息
    作者简介:

    吴能友(1965—),男,研究员,主要从事海洋地质与天然气水合物研究,E-mail:wuny@ms.giec.ac.cn

  • 基金项目:  国家自然科学基金委重大研究计划“西太平洋地球系统多圈层相互作用”重点项目(91858208);山东省泰山学者特聘专家计划(ts201712079);中国地质调查局海洋地质调查专项项目(DD20190819)
  • 中图分类号: P736.4

Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough

More Information
  • 摘要: 热液和冷泉活动是现代深海环境中两个重要的极端系统,它们均是岩石圈与外部圈层之间进行物质、能量转移和交换的重要途径,它们之间既有显著差异,但也存在很多相似点。一系列调查研究表明,在某些特殊构造单元,热液和冷泉活动可能并不是彼此孤立的,而是在构造地质、生物生态和元素循环上存在某种相互作用或耦合关系。冲绳海槽作为西太平洋一个典型的弧后盆地,发育了繁盛的热液和冷泉活动,是研究这两个海底极端系统相互影响机制的天然实验室。在大量文献调研和野外精细探测结果的基础上,分析了冲绳海槽内相互毗邻的冷泉和热液之间的物质扩散过程及生物地球化学作用,初步建立了两个极端系统内两种不同流体相互作用的概念模型,认识到未来如对两个深海极端环境共生区构造发育特征、地层流体演化、生物群落以及矿物元素组成进行系统分析,将有助于建立更加完善的冷泉-热液两个系统在物质和能量上的耦合关系模型,同时也有助于揭示它们在生物生态之间的沟通融合规律,最终可建立盆地尺度上热液-冷泉区相互作用模式,从而加深对西太平洋甚至全球范围内冷泉-热液两个极端环境系统甚至“流体-固体”耦合的规律性认识。
  • 图  1  世界海洋中已发现热液喷口(蓝色圆点)和可能冷泉发育区(粉色区域,以水合物稳定带代表)的叠置图

    ① 东海冲绳海槽,② 马里亚纳海沟和日本海沟,③ 西南太平洋(以劳盆地和马努斯海盆为典型),④ 东北印度洋脊,⑤ 东地中海,⑥ 北极加克超慢速扩张洋脊,⑦ 北大西洋南缘,⑧ 东北太平洋边缘(底图据Sun et al[12]修改)

    Figure  1.  Geological settings where hydrothermal fields and cold seep systems coexist in the global oceans

    ① Okinawa Trough, East China Sea, ②Mariana and Japan Trench, ③ Extending basins along the Southwest Pacific Ocean (e.g., Manus basin and Lau Basin), ④ Northeast Indian Ridge (Carlsberg Ridge), ⑤ Eastern Mediterranean, ⑥ Arctic Gakkel ultraslow spreading ocean ridge, ⑦ South margin of North Atlantic, ⑧ Northeast Pacific margin. Base map is modified after Sun et al[12]

    图  2  典型泥火山型冷泉(A)和洋中脊热液喷口(B)系统剖面图

    A图中,AOM:甲烷厌氧氧化反应,GHSZ:天然气水合物稳定带,MDAC:甲烷厌氧氧化来源的自生碳酸盐岩。A图修改自Ceramicola et al.[25];B图修改自German et al.[26]

    Figure  2.  Typical profiles of seafloor mud volcanic cold seeps (A) and hydrothermal vents (B) on a mid-ocean ridge

    In subfigure A, AOM:anaerobic oxidation of methane, GHSZ:gas hydrate stability zone,MDAC:methane-derived authigenic carbonate. Subfigure A is modified from Ceramicola et al.[25] and subfigure B from German et al.[26]

    图  3  加利福尼亚湾内瓜伊马斯盆地扩张中心附近火成岩与冷泉之间的关系[51]

    A. 多道地震剖面指示了岩床与气体活动(冷泉)的关系;B. 岩床与上部反射紊乱区域(绿色),显示沉积物横向尖灭岩床侵位后的上超现象;C. 年轻岩床上部存在浅层气现象,海底探测到冷泉生物群落;D. 裂谷轴线处的丘体下方存在岩床;E. 浊积层下部存在碟形岩床

    Figure  3.  Relationship between seafloor cold seeps and nearby igneous sills across the northern Guaymas spreading segment, according to seismic observations[51]

    A. Time-migrated MCS section with the amplitude coloured for large values, which tend to indicate sills, gas or turbiditic strata. The green rectangles indicate the bottom panels of depth-migrated detail; B. Sills with overlying disturbed region (green), lateral termination of disturbed region, thickness of post-intrusion sediments, and onlap onto the post-intrusion sea floor indicated; C. Shallow gas above interpreted young sill; a seafloor community is located above this feature; D. Sills beneath mound within axial graben; E. Saucer-shaped sills beneath turbiditic sediments

    图  4  冲绳海槽地理位置上相邻的热液喷口和冷泉区的极端生态群落对比

    A. 南奄西热液区的管状蠕虫,来自Watanabe, et al. (2015)[56];B. 南奄西热液区的贻贝和毛瓷蟹,来自Watanabe, et al. (2015)[56];C. GT-D1冷泉区的管状蠕虫和巨蛤,ROV摄像,2017年张謇号调查航次;D. GT-D1冷泉区巨蛤床,ROV摄像,2017年张謇号调查航次

    Figure  4.  Comparison of extreme ecological communities between adjacent hydrothermal vents and cold seeps in the Okinawa Trough

    A. Tubeworm clump in the Minami-Ensei Knoll, c.f. Watanabe et al. (2015)[56]; B. Typical rocky fauna in the Minami-Ensei Knoll, c.f. Watanabe et al. (2015)[56]; C. Tubeworm and clam from the GT-D1 cold seep site. Image by ROV Beaver during the integrated environmental and geological expedition of R/V Zhangjian in 2017; D. Clam bed observed in the GT-D1 cold seep site. Image by ROV FCV3000 during the integrated environmental and geological expedition of R/V Zhangjian in 2018

    图  5  利用ROV在冲绳海槽内相距不到50 km的热液区(A)和冷泉区(B)采集的贻贝形貌对比

    Figure  5.  Comparison of mussel morphology collected by ROV FCV3000 in the hydrothermal (A) and cold seep (B) less than 50 km apart in the Okinawa Trough during the integrated environmental and geological expedition of R/V Zhangjian in 2018

    图  6  冲绳海槽热液—冷泉两个系统流体相互作用概念模型

    具体内容见正文。OZ:氧化带,SMTZ:硫酸盐—甲烷过渡带,SDZ:硫酸盐亏损带,S-AOM:硫酸盐还原驱动的甲烷厌氧氧化作用,Fe-AOM:铁氧化物还原驱动的甲烷厌氧氧化作用

    Figure  6.  Conceptual model of fluid interaction between hydrothermal vents and adjacent cold seeps on the western slope of the OT, see the context for details

    OZ:oxidative zone; SMTZ:sulfate-methane transition zone; SDZ:sulfate-depleted zone; S-AOM:sulfate reduction-driven AOM; Fe-AOM:Fe oxide reduction driven AOM. Not to scale

    表  1  海底冷泉和热液系统之间的异、同特征比较

    Table  1.   Comparison of the characteristics of seafloor cold seeps and hydrothermal systems

    相似点 都具有重要的资源效应
    均支持化能自养生物群落
    具有相似的环境效应(圈层之间物质和能量交换)
    不同点 流体来源和成因机制不同
    地质构造和发育位置不同
    生化反应和元素循环不同
    下载: 导出CSV
  • [1] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073
    [2] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226(4677): 965-967. doi: 10.1126/science.226.4677.965
    [3] Parson L M, Walker C L, Dixon D R. Hydrothermal vents and processes [J]. Geological Society, London, Special Publication, 1995, 87(1): 1-2. doi: 10.1144/GSL.SP.1995.087.01.01
    [4] Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. New York: Cambridge University Press, 2009.
    [5] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
    [6] Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes [J]. Oceanography and Marine Biology-an Annual Review, 2005, 43: 1-46.
    [7] Levin L A, Baco A R, Bowden D A, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence [J]. Frontiers in Marine Science, 2016, 3: 72.
    [8] 孙治雷, 何拥军, 李军, 等. 洋底热液喷口系统的微生物成矿研究进展[J]. 海洋地质与第四纪地质, 2011, 31(3):123-132. [SUN Zhilei, HE Yongjun, LI Jun, et al. The recent progress of submarine hydrothermal biomineralization [J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132.
    [9] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450. [SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017
    [10] German C R, Seyfried Jr W E. Hydrothermal processes [J]. Treatise on Geochemistry, 2014, 6: 191-233.
    [11] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926
    [12] Xu N, Wu S G, Shi B Q, et al. Gas hydrate associated with mud diapirs in Southern Okinawa Trough [J]. Marine and Petroleum Geology, 2009, 26(8): 1413-1418. doi: 10.1016/j.marpetgeo.2008.10.001
    [13] 孙治雷, 窦振亚, 黄威, 等. 现代海底热液硫化物矿体微生物风化的几个重要研究方向[J]. 海洋地质与第四纪地质, 2014, 34(1):65-74. [SUN Zhilei, DOU Zhenya, HUANG Wei, et al. Key issues for microbial weathering study in modern submarine hydrothermal sulfides [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 65-74.
    [14] Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1
    [15] Kulm L D, Suess E, Moore J C, et al. Oregon subduction zone: venting, fauna, and carbonates [J]. Science, 1986, 231(4738): 561-566. doi: 10.1126/science.231.4738.561
    [16] Kelley D S, Karson J A, Früh-Green, G L, et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
    [17] Proskurowski G, Lilley M D, Seewald, J S, et al. Abiogenic hydrocarbon production at lost city hydrothermal field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
    [18] Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deep water Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6
    [19] MacDonald I R, Bohrmann G, Escobar E, et al. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico [J]. Science, 2004, 304(5673): 999-1002. doi: 10.1126/science.1097154
    [20] Skarke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin [J]. Nature Geoscience, 2014, 7(9): 657-661. doi: 10.1038/ngeo2232
    [21] Riedel M, Scherwath M, Römer M, et al. Distributed natural gas venting offshore along the Cascadia margin [J]. Nature Communications, 2018, 9(1): 3264. doi: 10.1038/s41467-018-05736-x
    [22] Reysenbach A L, Liu Y T, Banta A B, et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents [J]. Nature, 2006, 442(7101): 444-447. doi: 10.1038/nature04921
    [23] Åström E K L, Carroll M L, Ambrose Jr W G, et al. Methane cold seeps as biological oases in the high-Arctic deep sea [J]. Limnology and Oceanography, 2018, 63(S1): S209-S231. doi: 10.1002/lno.10732