留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋古温标研究新进展及其在冲绳海槽区的应用

赵京涛 李军 窦衍光 王利波 白凤龙 胡邦琦 邹亮

赵京涛, 李军, 窦衍光, 王利波, 白凤龙, 胡邦琦, 邹亮. 海洋古温标研究新进展及其在冲绳海槽区的应用[J]. 海洋地质与第四纪地质, 2016, 36(1): 123-132. doi: 10.16562/j.cnki.0256-1492.2016.01.012
引用本文: 赵京涛, 李军, 窦衍光, 王利波, 白凤龙, 胡邦琦, 邹亮. 海洋古温标研究新进展及其在冲绳海槽区的应用[J]. 海洋地质与第四纪地质, 2016, 36(1): 123-132. doi: 10.16562/j.cnki.0256-1492.2016.01.012
ZHAO Jingtao, LI Jun, DOU Yanguang, WANG Libo, BAI Fenglong, HU Bangqi, ZOU Liang. PROGRESS OF MARINE PALEO-TEMPERATURE PROXIES AND THEIR APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 123-132. doi: 10.16562/j.cnki.0256-1492.2016.01.012
Citation: ZHAO Jingtao, LI Jun, DOU Yanguang, WANG Libo, BAI Fenglong, HU Bangqi, ZOU Liang. PROGRESS OF MARINE PALEO-TEMPERATURE PROXIES AND THEIR APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 123-132. doi: 10.16562/j.cnki.0256-1492.2016.01.012

海洋古温标研究新进展及其在冲绳海槽区的应用


doi: 10.16562/j.cnki.0256-1492.2016.01.012
详细信息
    作者简介:

    赵京涛(1980-),男,主要从事海洋地质研究。Email:zhaojingtao113@163.com

  • 基金项目:

    国家自然科学基金项目(41406074,40906033,41106058)

  • 中图分类号: P736.4

PROGRESS OF MARINE PALEO-TEMPERATURE PROXIES AND THEIR APPLICATION IN THE OKINAWA TROUGH

More Information
  • 摘要: 表层海水古温度的重建是古海洋学研究的重要内容之一,其反演的表层洋流的演化对全球气候变化研究意义重大。近年来,3种新兴的地球化学温度指标(Mg/Ca、U37k'和TEX86)应用十分广泛,但也是各有利弊。在冲绳海槽地区,不同古温标的应用结果差异较大,机理有待进一步探讨。从全球角度总结了3种古温标的适用性及优缺点,剖析了具体应用过程中不同古温标的区域性和时间性差异。重点综述了冲绳海槽区古温标研究历史和研究现状,强调了区域性古温标适用性研究的重要性,提出了该区域末次冰消期以来古温度演化机理研究面临的挑战。
  • [1] Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21:283-293.
    [2] Peason P N, Ditchfield P W, Singano J, et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs[J]. Nature, 2001, 413:481-487.
    [3] Spero H J, Bijma J, LEA D W,et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390:497-500.
    [4] Pflaumann U, Diprat J, Pujol C Simmax:A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments[J]. Palaeogeography, 1996, 11:15-35.
    [5] Barbante C, Barnola J M, Becaglis S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444:195-198.
    [6] Nurnberg D. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60:803-814.
    [7] Ferguson J E, Henderson G M, Kucera M,et al. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008, 265(1-2):153-166.
    [8] Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution:Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996, 11(5):543-551.
    [9] Egons S, Sadekov A, Dedeckker P. Modulation and daily banding of Mg/Ca in tests by symbiont photosynthesis and respiration:a complication for seawater thermometry?[J]. Earth and Planetary Science Letters, 2004, 225(3-4):411-419.
    [10] LEA D W, PAK D K, SPERO H J. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations[J]. Science, 2000, 289(5485):1719-1724.
    [11] Dekens D S, Lea D W, Pak D K,et al. Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J]. Geochemistry Geophysics Geosystems, 2002, 3(4), doi:10.1029/2001GC000200.
    [12] Rosenthal Y, Lohmann G P. Accurate estimation of sea surface temperatures using dissolutioncorrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3), doi:10.1029/2001PA000749.
    [13] Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2), doi:10.1029/2002PA000846.
    [14] Mcconnell M C, Thunell R C. Calibration of the planktonic foraminiferal Mg/Ca paleothermometer:Sediment trap results from the Guaymas Basin, Gulf of California[J]. Palaeogeography, 2005, 20, doi:10.1029/2004PA001077.
    [15] Schmidt M W, Lynch-stieglita J. Florida Straits deglacial temperature and salinity change:Implications for tropical hydrologic cycle variability during the Younger Dryas[J]. Paleoceanography, 2011, 26, doi:10.1029/2011PA002157.
    [16] Lo Li, Lai Yung-Hsiang, Wei Kuo-yen,et al. Persistent sea surface temperature and declined sea surface salinity in the northwestern tropical Pacific over the past 7500years[J]. Journal of Asian Earth Sciences, 2013, 66:234-239.
    [17] Kubota Y, Kimoto K, Tada R,et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea[J]. Paleoceangraphy, 2010, 25, doi:10.1029/2009PA001891.
    [18] Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3:578-583.
    [19] Cleroux C, Debret M, Cortijo E,et al. High-resolution sea surface reconstructions off Cape Hatteras over the last 10 ka[J]. Paleoceanography, 2012, 27(1), doi:10.1029/2011PA002184.
    [20] Dang Hao-wen, Jian Zhi-min, Bassinot F,et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1), doi:10.1029/2011GL050154.
    [21] Hoefs M J L, Versteegh G J M, Rijpstra W I C,et al. Postdepositional oxic degradation of alkenones:Implications for the measurement of palaeo sea surface temperatures[J]. Paleoceanography, 1998, 13(1):42-49.
    [22] Gong Chang-rui, Hollander D J. Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions:implication for paleotemperature reconstruction[J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4):405-411.
    [23] Brassell S, Eglinton G, MARLOWE I,et al. Molecular stratigraphy:a new tool for climatic assessment[J]. Nature, 1986, 320:129-133.
    [24] Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long chain ketone compositions for palaeotemperature assessment[J]. Nature, 1987, 330:367-369.
    [25] Muller P J, Kirst G, Ruhland G,et al. Calibration of the alkenone paleotemperature index U37K' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S)[J]. Geochimica et Cosmochimica Acta, 1998, 62(10):1757-1772.
    [26] Bard E, Rostek F, Turon J L, et al. Hydrological Impact of Heinrich Events in the Subtropical Northeast Atlantic[J]. Science, 2000, 289:1321-1324.
    [27] Kienast M, Steinke S, Stattegger K,et al. Synchronous Tropical South China Sea SST Change and Greenland Warming During Deglaciation[J]. Science, 2001, 291(5511):2132-2134.
    [28] Kiefer T, Kienast M. Patterns of deglacial warming in the Pacific Ocean:a review with emphasis on the time interval of Heinrich event 1[J]. Quaternary Science Reviews, 2005, 24(7-9):1063-1081.
    [29] Prahl F G, Mix A C, Sparrow M A. Alkenone paleothermometry:Biological lessons from marine sediment records off western South America[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):101-117.
    [30] Schouten S, Hopmans E C, Schefub E,et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204:265-274.
    [31] Kim J H, Van Der Meer J, Schouten S,et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids:Implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4639-4654.
    [32] Schouten S, Hopmans E C, Sinninghe Damste J S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry[J]. Organic Geochemistry, 2004, 35(5):567-571.
    [33] Kim J H, Crosta X, Michel E,et al. Impact of lateral transport on organic proxies in the Southern Ocean[J]. Quaternary Research, 2009, 71(2):246-250.
    [34] Wuchter C, Schouten S, Coolien M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2004, 19(4), doi:10.1029/2004PA001041.
    [35] Wuchter C, Schouten S, Wakeham S G,et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2005, 20(3), doi:10.1029/2004PA001110.
    [36] Wuchter C, Schouten S, Wakeham S G,et al. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea:Implications for TEX86 paleothermometry[J]. Paleoceanography, 2006, 21(4), doi:10.1029/2006PA001279.
    [37] 赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3):75-84.

    [ZHAO Mei-xun, LI Da-wei, XING Lei. Using Archaea Biomarker Index TEX86 as a Paleo-sea Surface Temperature Proxy[J]. Marine Geology and Quaternary Geology, 2009, 29(3):75-84.]
    [38] Herfort L, Schouten S, Boon J P,et al. Application of the TEX86 temperature proxy to the southern North Sea[J]. Organic Geochemistry, 2006, 37(12):1715-1726.
    [39] Karner M B, Delong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409:507-510.
    [40] Herndl G J, Reinthaler T, Teira E,et al. Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71(5):2303-2309.
    [41] Kim J H, Romero O E, Lohmann G,et al. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard-Oeschger interstadials[J]. Earth and Planetary Science Letters, 2012, 339-340:95-102.
    [42] Lee K E, Kim J H, Wilke I,et al. A study of the alkenone, TEX86, and planktonic foraminifera in the Benguela Upwelling System:Implications for past sea surface temperature estimates[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10), doi:10.1029/2008GC002056.
    [43] Lopes Dos Santos R A, Prange M, Castaneda I S,et al. Glacial-interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic[J]. Earth and Planetary Science Letters, 2010, 300(3-4):407-414.
    [44] Jia Guo-dong, Zhang Jie, Chen Jian-fang,et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea[J]. Organic Geochemistry, 2012, 50:68-77.
    [45] Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4):1154-1173.
    [46] LI Da wei, ZHAO Mei xun, TIAN Jun,et al. Comparison and implication of TEX86 and U37k' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376:213-223.
    [47] Huguet C, Kim J H, Sinninghe Damste J S,et al. Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and U37k')[J]. Paleoceanography, 2006, 21(3), doi:10.1029/2005PA001215.
    [48] Seki O, Sakamoto T, Sakai S,et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10), doi:10.1029/2009GC002613.
    [49] Leider A, Hinrichs K U, Mollenhauer G,et al. Core-top calibration of the lipid-based U37k' and TEX86 temperature proxies on the southern Italian shelf (SW Adriatic Sea, Gulf of Taranto)[J]. Earth and Planetary Science Letters, 2010, 300(1-2):112-124.
    [50] Richey J N, Hollander D J, Flower B P,et al. Merging late Holocene molecular organic and foraminiferal-based geochemical records of sea surface temperature in the Gulf of Mexico[J]. Paleoceanography, 2011, 26(1), doi:10.1029/2010PA002000.
    [51] Shintani T, Yamamoto M, Chen M T. Paleoenvironmental changes in the northern South China Sea over the past 28000years:A study of TEX86-derived sea surface temperatures and terrestrial biomarkers[J]. Journal of Asian Earth Sciences, 2011, 40(6):1221-1229.
    [52] WANG Yi-ming V, LEDUC G, REGENBERG M, et al. Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation[J]. Paleoceanography, 2013, 28(4):619-632.
    [53] Castaneda I S, Schefub E, Patzold J, et al. Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years[J]. Paleoceanography, 2010, 25(1), doi:10.1029/2009PA001740.
    [54] Huguet C, Martrat B, Grimalt J O,et al. Coherent millennial-scale patterns in U37k' and TEX86H temperature records during the penultimate interglacial-to-glacial cycle in the western Mediterranean[J]. Paleoceanography, 2011, 26(2), doi:10.1029/2010PA002048.
    [55] Lopes Dos Santos R A, Spooner M I, Barrows T T,et al. Comparison of organic (U37k', TEX86H, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia[J]. Paleoceanography, 2013, 377-387.
    [56] SUN You-bin, OPPO D W, XIANG Rong, et al. Last deglaciation in the Okinawa Trough:Subtropical northwest Pacific link to Northern Hemisphere and tropical climate[J]. Paleoceangraphy, 2005, doi:10.1029/2004PA001061.
    [57] ZHOU Hou-yun, LI Tie-gang, JIA Guo-dong,et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246:440-453.
    [58] CHANG Yuan-pin, WANG Wei-lung, YOKOYAMA Y,et al. Millennial-Scale Planktic Foraminifer Faunal Variability in the East China Sea during the Past 40000 Years (IMAGES MD012404 from the Okinawa Trough)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4):389-401.
    [59] YU Hua, LIU Zhen-xia, BERNE S,et al. Variations in temperature and salinity of the surface water above the middle Okinawa Trough during the past 37kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1-2):154-164.
    [60] IJIRI A, WANG Lue-jiang, OBA T,et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219:239-261.
    [61] Yamamoto M, Kishizaki M, Oba T,et al. Intense winter cooling of the surface water in the northern Okinawa Trough during the last glacial period[J]. Journal of Asian Earth Sciences, 2013, 69:86-92.
    [62] XU Xue-dong, ODA M. Surface-water evolution of the eastern East China Sea during the last 36,000 years[J]. Marine Geology, 1999, 156(1-4):285-304.
    [63] LI Tie-gang, LIU Zhen-xia, HALL M,et al. Heinrich event imprints in the Okinawa Trough:evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1):133-146.
    [64] ZHAO Mei-xun, HUANG Chi-yue, WEI Kuo-yen. A 28,000 Year U37k' Sea-Surface Temperature Record of ODP Site 1202B, the Southern Okinawa Trough[J]. TAO, 2005, 16(1):45-56.
    [65] CHEN M-T, LIN X P, CHANG Y-P,et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years[J]. Geophysical Research Letters, 2010, 37, doi:10.1029/2010GL045202.
    [66] WU Wei-chao, TAN Wen-bing, ZHOU Li-ping,et al. Sea surface temperature variability in southern Okinawa Trough during last 2700 years[J]. Geophysical Research Letters, 2012, 39, doi:10.1029/2012GL052749.
    [67] LI Chuan-shun, JIANG Bo, LI An-chun,et al. Sedimentation rates and provenance analysis in the Southwestern Okinawa Trough since the mid-Holocene[J]. Chinese Science Bulletin, 2009, 54(7):1234-1242.
    [68] Tanaka Y. Coccolith fluxes and species assemblages at the shelf edge and in the Okinawa Trough of the East China Sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2003, 50(2):503-511.
    [69] Nakanishi T, Yamamoto M, Irino T,et al. Distribution of glycerol dialkyl glycerol tetraethers, alkenones and polyunsaturated fatty acids in suspended particulate organic matter in the East China Sea[J]. Journal of Oceanography, 2012, 68:959-970.
    [70] Nakanioshi T, Yamamoto M, Tada R,et al. Centennial-scale winter monsoon variability in the northern East China Sea during the Holocene[J]. Journal of Quaternary Science, 2012, 27(9):956-963.
    [71] Kiefer T, Mccave I N, Eklderfield H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography[J]. Geophysical Research Letters, 2006, 33(24), doi:10.1029/2006GL027097.
    [72] Naidu P D, Govil P. New evidence on the sequence of deglacial warming in the tropical Indian Ocean[J]. Journal of Quaternary Science, 2010, 25(7):1138-1143.
    [73] MIX A C. Running hot and cold in the eastern equatorial Pacific[J]. Quaternary Science Reviews, 2006, 25(11-12):1147-1149.
    [74] Clark P U, Shakun J D, Baker P A,et al. Global climate evolution during the last deglaciation[J]. PNAS, 2012, 109(19):E1134-E1142.
    [75] Andersen K K, Azuma N, Barnola J M,et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005):1471-51.
    [76] WANG Yong-jin, CHENG Hai, EDEARDS R L,et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China[J]. Science, 2001, 294:2345-2348.
    [77] YUAN Dong-liang, CHENG Hai, EDWARDS R L, et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon[J]. Science, 2004, 304(5670):575-578.
    [78] Mcmanus J F, Francols R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428:834-837.
    [79] Anderson R F, Ali S, Bradtmiller L I,et al. Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2[J]. Science, 2009, 323(5920):1443-1148.
  • [1] 肖倩文, 冯秀丽, 苗晓明.  神狐海域SH37岩心浊流沉积及其物源分析 . 海洋地质与第四纪地质, 2021, 41(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2021011901
    [2] 范佳慧, 窦衍光, 赵京涛, 李军, 邹亮, 蔡峰, 陈晓辉, 李清.  东海外陆坡−冲绳海槽水体剖面地球化学特征与指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-15.
    [3] 罗顺开, 周怀阳, 赵国庆, 袁伟.  加瓜海脊铁锰结壳的年龄及其定年方法适用性比较 . 海洋地质与第四纪地质, , (): -. doi: 10.16562/j.cnki.0256-1492.2021070502
  • 加载中
计量
  • 文章访问数:  694
  • HTML全文浏览量:  84
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 修回日期:  2015-05-08

海洋古温标研究新进展及其在冲绳海槽区的应用

doi: 10.16562/j.cnki.0256-1492.2016.01.012
    作者简介:

    赵京涛(1980-),男,主要从事海洋地质研究。Email:zhaojingtao113@163.com

基金项目:

国家自然科学基金项目(41406074,40906033,41106058)

  • 中图分类号: P736.4

摘要: 表层海水古温度的重建是古海洋学研究的重要内容之一,其反演的表层洋流的演化对全球气候变化研究意义重大。近年来,3种新兴的地球化学温度指标(Mg/Ca、U37k'和TEX86)应用十分广泛,但也是各有利弊。在冲绳海槽地区,不同古温标的应用结果差异较大,机理有待进一步探讨。从全球角度总结了3种古温标的适用性及优缺点,剖析了具体应用过程中不同古温标的区域性和时间性差异。重点综述了冲绳海槽区古温标研究历史和研究现状,强调了区域性古温标适用性研究的重要性,提出了该区域末次冰消期以来古温度演化机理研究面临的挑战。

English Abstract

参考文献 (79)

目录

    /

    返回文章
    返回