NUMERICAL SIMULATION OF THE OVERPRESSURE IN THE DEEP-WATER AREA OF THE PEARL RIVER MOUTH BASIN, NORTHERN SOUTH CHINA SEA: A CASE FROM SITE 1148, ODP LEG 184
-
摘要: 利用珠江口盆地深水区ODP1148站位的测井及岩心数据计算了现今的孔隙度及超压状态,通过求解水动力方程模拟了30 Ma以来孔隙度和超压场等的演化,探讨超压发育特征、演化规律及控制因素。模拟计算表明,研究区100 m以浅的更新世地层为正常压力,深部产生超压。在约460 m深度处孔隙度和超压增大,有效应力减小,对应滑塌层段的出现。早期沉积单元的超压演化特征与现今场并不完全相符,28.5~23.8 Ma期间超压突降,应为南海北部陆坡构造侵蚀事件的响应。沉积速率是控制珠江口盆地深水区超压演化的主要因素。本研究对超压含油气盆地的勘探与开发具有理论和实际意义。Abstract: The present porosity and overpressure in the deep-water area of the Pearl River Mouth Basin (PRMB) have been calculated with the logging and core data of site 1148, ODP184, on the northern slope of the South China Sea, and the evolution of porosity and overpressure in the 30Ma is simulated with the hydrodynamic model, which has been applied to investigate the characteristics, evolution and controlling factors of the overpressure. The study shows that the Pleistocene shallower than 100 m display normal formation pressure, and overpressure only occurs in the deeper strata. Porosity and pressure increase as effective stress decreases at about 460 m depth, corresponding to the presence of the slumped unit. The evolution of the early-deposited sediments did not fully agree with the present field. The overpressure during 28.5 to 23.8 Ma decreased sharply, which could be the response to the erosion event during this period on the northern slope of the South China Sea. Deposition rate is the dominating factor to the evolution of formation pressure in the deep-water area of PRMB. This study would be of theoretical and practical importance to the hydrocarbon-bearing basin with overpressure.
-
Keywords:
- overpressure /
- numerical simulation /
- porosity /
- ODP1148 /
- Pearl River Mouth Basin
-
-
[1] Chen D, Wu S, Dong D, et al. Focused fluid flow in the Baiyun Sag, northern South China Sea:implications for the source of gas in hydrate reservoirs[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(1):178-189.
[2] Dugan B, Sheahan T C. Offshore sediment overpressures of passive margins:Mechanisms, measurement, and models[J]. Reviews of Geophysics, 2012, 50(3).
[3] Sun Yunbao, Wu Shiguo, Dong Dongdong, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea[J]. Marine Geology, 2012, 311:32-40.
[4] Sun Qiliang, Wu Shiguo, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318:1-14.
[5] 苏龙,郑建京,王琪,等. 琼东南盆地超压研究进展及形成机制[J]. 天然气地球科学, 2012, 23(4):662-672. [SU Long, ZHENG Jianjing, WANG Qi, et al. Formation mechanism and research progress on overpressure in the Qiongdongnan Basin[J]. Natural Gas Geoscience, 2012, 23(4):662-672.]
[6] 董冬冬,赵汗青,吴时国,等. 深水钻井中浅水流灾害问题及其地球物理识别技术[J]. 海洋通报, 2007, 26(01):114-120. [DONG Dongdong, ZHAO Hanqing, WU Shiguo, et al. SWF problem in deepwater drilling and its geophysical detection techniques[J]. Journal of Marine Science Bulletin, 2007, 26(1):114-120.]
[7] 万志峰,夏斌,林舸,等. 超压盆地油气地质条件与成藏模式-以莺歌海盆地为例[J]. 海洋地质与第四纪地质, 2010, 30(6):91-97. [WAN Zhifeng, XIA Bin, LIN Ge, et al. Hydrocarbon accumulation model for overpressure basin:an example from the Yinggehai Basin[J]. Marine Geology and Quaternary Geology, 2010, 30(6):91-97.]
[8] 翟普强,陈红汉,谢玉洪,等. 琼东南盆地深水区超压演化与油气运移模拟[J]. 中南大学学报:自然科学版, 2013, 44(10):4187-4201. [ZHAI Puqiang, CHEN Honghan, XIE Yuhong, et al. Modelling of evolution of overpressure system and hydrocarbon migration in deepwater area of Qiongdongnan basin, South China Sea[J]. Journal of Central South University (Science and Technology), 2013, 44(10):4187-4201.]
[9] Xie Xinong, Li Sitian, Hu Xiangyun, et al. Conduit system and formation mechanism of heat fluids in diapiric belt of Yinggehai basin, China[J]. Science in China Series D:Earth Sciences, 1999, 42(6):561-571.
[10] 张洋,叶加仁,王子嵩,等. 珠江口盆地番禺4洼超压发育特征及演化历史[J]. 海洋地质与第四纪地质, 2010, 30(4):171-177. [ZHANG Yang, YE Jiaren, WANG Zisong, et al. Characteristics and evolutionary history of overpressure in Panyu 4 Sag, Pearl River Mouth Basin[J]. Marine Geology and Quaternary Geology, 2010, 30(4):171-177.]
[11] 王家豪,庞雄,王存武,等. 珠江口盆地白云凹陷中央底辟带的发现及识别[J]. 地球科学:中国地质大学学报, 2006, 31(2):209-213. [WANG Jiahao, PANG Xiong, WANG Cunwu, et al. Discovery and recognition of the central diapiric zone in Baiyun depression, Pearl River Mouth Basin[J]. Journal of Earth Science, 2006, 31(2):209-213.]
[12] Wang P, Prell W L, Blum P. Proceedings of the Ocean Drilling Program, Initial Reports Volume 184[R]. 2000.
[13] Li Q Y, Han Z M, Su X. Late Oligocene rapid transformations in the South China Sea[J]. Marine Micropaleontology, 2005, 54(1-2):5-25.
[14] Blum P. Physical properties handbook[R]. ODP Tech. Note, 1997, 26. doi: 10.2973/odp.tn.26.
[15] 卢良鑫,雷雄,刘学伟. 中国南海北部陆坡孔隙度的求取[J]. 地球物理学报, 2013, 56(2):601-607. [LU Liangxin, LEI Xiong, LIU Xuewei. Prediction of porosity in the North Margin of the South China Sea[J]. Chinese Journal of Geophysics, 2013, 56(2):601-607.]
[16] Hart B S, Flemings P B, Deshpande A. Porosity and pressure:Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin[J]. Geology, 1995, 23(1):45-48.
[17] Dugan B, Flemings P B. Overpressure and fluid flow in the New Jersey continental slope:Implications for slope failure and cold seeps[J]. Science, 2000, 289:288-291.
[18] Gordon D S, Flemings P B. Generation of overpressure and compaction-driven fluid flow in a Plio-Pleistocene growth-faulted basin, Eugene Island 330, offshore Louisiana[J]. Basin Research, 1998, 10(2):177-196.
[19] Christopher L M. Forward modelling of compaction and fluid flow in the Ursa region, Mississippi canyon area, Gulf of Mexico[D]. The Pennsylvania State University, 2006.
[20] Harrison W J, Summa L L. Paleohydrology of the Gulf of Mexico basin[J]. American Journal of Science, 1991, 291(2):109-176.
[21] Mello U T, Karner G D, Anderson R N. A physical explanation for the positioning of the depth to the top of overpressure in shale-dominated sequences in the Gulf Coast basin, United States[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B2):2775-2789.
[22] Neuzil C E. How permeable are clays and shales[J]. Water Resources Research, 1994, 30(2):145-150.
[23] Li Q Y, Wang P X, Zhao Q H, et al. A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea[J]. Marine Geology, 2006, 230(3-4):217-235.
[24] 邵磊,李献华,汪品先,等. 南海渐新世以来构造演化的沉积记录-ODP1148站深海沉积物中的证据[J]. 地球科学进展, 2004(04):539-544.[SHAO Lei, LI Xianhua, WANG Pinxian, et al. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene-evidence from deep sea sediments of ODP Site 1148 [J]. Advances in Earth Science, 2004(04):539-544.]
[25] 曹华, 龚晶晶, 汪贵锋. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3):422-425. [CAO Hua, GONG Jingjing, WANG Guifeng. The cause of overpressure and its relationship with reservoir forming[J]. Natural Gas Geoscience, 2006, 17(3):422-425.]
[26] Dong Dongdong, Wu Shiguo, Li Jiabiao, Thomas Ludmann. Tectonic contrast between the conjugate margins of the South China Sea and the implication for the differential extensional model[J]. Science China Earth Sciences, 2014, 6(57):1415-1426.
-
期刊类型引用(4)
1. 热西提·亚力坤,单玄龙,郝国丽,李康. 珠江口盆地西江主洼泥-流体底辟及其发育条件. 海洋地质前沿. 2023(07): 58-69 . 百度学术
2. 罗静兰,李弛,雷川,曹江骏,宋昆鹏. 碎屑岩储集层成岩作用研究进展与热点问题讨论. 古地理学报. 2020(06): 1021-1040 . 百度学术
3. XIE Yangbing,WU Tuoyu,SUN Jin,ZHANG Hanyu,WANG Jiliang,GAO Jinwei,CHEN Chuanxu. Sediment Compaction and Pore Pressure Prediction in Deepwater Basin of the South China Sea: Estimation from ODP and IODP Drilling Well Data. Journal of Ocean University of China. 2018(01): 25-34 . 必应学术
4. 谢杨冰,吴时国. 南海深水海盆沉积物压实作用及影响因素. 海洋地质与第四纪地质. 2017(03): 37-46 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 2470
- HTML全文浏览量: 503
- PDF下载量: 16
- 被引次数: 6