奥陶纪到志留纪全球板块重建:中国三大陆块位置及其洋陆格局的运动学检验

聂仕琪, 黄金水, 李三忠

聂仕琪, 黄金水, 李三忠. 奥陶纪到志留纪全球板块重建:中国三大陆块位置及其洋陆格局的运动学检验[J]. 海洋地质与第四纪地质, 2015, 35(4): 177-188. DOI: 10.16562/j.cnki.0256-1492.2015.04.019
引用本文: 聂仕琪, 黄金水, 李三忠. 奥陶纪到志留纪全球板块重建:中国三大陆块位置及其洋陆格局的运动学检验[J]. 海洋地质与第四纪地质, 2015, 35(4): 177-188. DOI: 10.16562/j.cnki.0256-1492.2015.04.019
NIE Shiqi, HUANG Jinshui, LI Sanzhong. GLOBAL PLATE RECONSTRUCTION FROM ORDIVICIAN TO SILURIAN: KINEMATICS TEST OF THEIR LOCATIONS OF THREE CHINA'S CONTINENTS AND OCEAN-CONTINENT CONFIGURATION[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 177-188. DOI: 10.16562/j.cnki.0256-1492.2015.04.019
Citation: NIE Shiqi, HUANG Jinshui, LI Sanzhong. GLOBAL PLATE RECONSTRUCTION FROM ORDIVICIAN TO SILURIAN: KINEMATICS TEST OF THEIR LOCATIONS OF THREE CHINA'S CONTINENTS AND OCEAN-CONTINENT CONFIGURATION[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 177-188. DOI: 10.16562/j.cnki.0256-1492.2015.04.019

奥陶纪到志留纪全球板块重建:中国三大陆块位置及其洋陆格局的运动学检验

基金项目: 

国家自然科学基金项目(91014005,41474082)

国家自然科学基金重大项目(41190072)

详细信息
    作者简介:

    聂仕琪(1989-),男,硕士,从事板块构造与地球动力学研究,Email:nsq@mail.ustc.edu.cn

  • 中图分类号: P736.1

GLOBAL PLATE RECONSTRUCTION FROM ORDIVICIAN TO SILURIAN: KINEMATICS TEST OF THEIR LOCATIONS OF THREE CHINA'S CONTINENTS AND OCEAN-CONTINENT CONFIGURATION

  • 摘要: 中国三大陆块是全球奥陶纪到志留纪板块与洋陆格局重建的关键,涉及到古亚洲洋与原特提斯洋的演化。综合了全球奥陶纪到志留纪的古地磁、古生物、古气候以及地球化学的相关证据,重建了中国三大陆块在这一时期的板块演化与洋陆格局,并将它们与全球板块演化模型结合到一起,特色在于通过板块运动的速度场分析,厘定了全球重要的板块边界及其性质。得到以下新认识:在奥陶纪到志留纪,中国三大陆块独立地位于地球的低纬地区,并且不依附于任何大的陆块,离散分布于原特提斯洋与古亚洲洋之间,原特提斯洋与古亚洲洋不断消减俯冲。其中,华北陆块早期靠近西伯利亚大陆东缘,华南陆块在奥陶纪早期沿着冈瓦纳大陆西侧漂移,塔里木陆块在奥陶纪进行了一个南北向的大范围的运动后,在志留纪开始向西漂移。中国三大陆块在这一时期不断地相互作用。在奥陶纪到中志留纪,原特提斯洋不断地俯冲冈瓦纳大陆与华北大陆,直到晚志留纪,随着古特提斯洋的扩张,原特提斯洋开始逐渐闭合。
    Abstract: The positions of the three China's continents, the continents of North China, Tarim and South China, are the key issues to the reconstruction of Ordovician and Silurian global plate framework and ocean-land distribution pattern, since it concerns the reconstruction of the paleo-Asian land and the proto-Tethyan ocean. In this paper, we have made a review of evidence in paleomagnetism,geochemistry, paleontology and paleoclimate, then reconstructed the ocean-continent pattern and plate evolutionary history of the three China's continents, upon the global plate reconstruction model. Plate velocity field is used to identify the plate boundary and its attribute. Our data suggests that the three China's continents were all in the lower latitude throughout the Ordovician and Silurian, and independent from other continents, discretely located in the paleo-Asian and proto-Tethyan oceans. The North China Block occurred not far from the eastern part of the Siberia in early Ordovician, the South China Block drifted along the Gondwana throughout the Ordovician and Silurian, Whereas the Tarim Block moved for a long distance from the southern to the northern hemisphere during the Ordovician, then westward drifted in Silurian. The three China's continents were not far from each other, and sometimes interacted with each other. During this period, the proto-Tethyan Ocean subducted under the Gondwana and North China Block constantly until the opening of the paleo-Tethyan Ocean.
  • [1]

    Scotese CR, McKerrow WS. Revised world maps and introduction[J]. Geological Society, London, Memoirs, 1990, 12:1-21.

    [2]

    Metcalfe I. Palaeozoic-mesozoic history of se asia[J]. Geological Society, London, Special Publications, 2011, 355:7-35.

    [3]

    Stampfli G, Hochard C, Vérard C, et al. The formation of pangea[J]. Tectonophysics, 2013, 593:1-19.

    [4]

    Torsvik TH, Steinberger B, Cocks LRM, et al. Longitude:Linking earth's ancient surface to its deep interior[J]. Earth and Planetary Science Letters, 2008, 276:273-282.

    [5]

    Seton M, Müller R, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113:212-270.

    [6]

    Domeier M, Torsvik TH. Plate tectonics in the late paleozoic[J]. Geoscience Frontiers, 2014, 5:303-350.

    [7]

    Torsvik TH, van der Voo R, Doubrovine PV, et al. Deep mantle structure as a reference frame for movements in and on the earth[J]. Proceedings of the National Academy of Sciences, 2014, 201318135.

    [8]

    Cocks, L.R.M., Torsvik, T.H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews,2013,117, 40-79.

    [9]

    Cocks LRM, Torsvik TH. The palaeozoic geography of laurentia and western laurussia:A stable craton with mobile margins[J]. Earth-Science Reviews, 2011, 106:1-51.

    [10]

    Cocks LRM, Torsvik TH. Siberia, the wandering northern terrane, and its changing geography through the palaeozoic[J]. Earth-Science Reviews, 2007, 82:29-74.

    [11]

    Cocks LRM, Torsvik TH. Baltica from the late precambrian to mid-palaeozoic times:The gain and loss of a terrane's identity[J]. Earth-Science Reviews, 2005, 72:39-66.

    [12]

    Torsvik TH, Cocks LRM. Gondwana from top to base in space and time[J]. Gondwana Research, 2013, 24:999-1030.

    [13] 孙丽莎, 黄宝春. 塔里木地块奥陶纪古地磁新结果及其构造意义[J]. 地球物理学报, 2009, 52(7):1836-1848.

    [SUN Lisha,HUANG Baochun.New paleomagnetic results from Ordivician rocks from the Tarim blocks,nothwest China and its tectonic implications[J].Chinese Journal of Geophysics,2009,52(7):1836-1848.]

    [14] 景秀春, 邓胜徽, 王训练. 塔里木板块奥陶纪运动学特征:来自牙形石的证据[J]. 中国科技论文在线精品论文,2014,7(21):2113-2121.

    [JING Xiuchun,DENG Shenghui,WANG Xunlian.The kinematic characteristics of the Tarim paleoplate in the Ordovician:Evidence from conodonts[J].Highlights of Sciencepaper Online,2014,7(21):2113-2121.]

    [15] 侯方辉,张训华,温珍河,等.古生代以来中国主要块体活动古地理重建及演化[J].海洋地质与第四纪地质,2014,34(6):9-26.

    [HOU Fanghui,ZHANG Xunhua,WEN Zhenhe,et al.Paleogeographic reconstruction and tectonic evolution of major blocks in china since paleozoic[J].Marine Geology and Quaternary Geology,2014,34(6):9-26.]

    [16]

    Xiao W, Huang B, Han C, et al. A review of the western part of the altaids:A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18:253-273.

    [17] 许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27:1-22.[XU Zhiqin,LI Sitian,ZHANG Jianxin et al.Paleo-Asian and Tethyan tectonic systems with docking the Tarim plate[J].Acta Petrologica Sinica,2009

    ,27(1):1-22.]

    [18] 高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28:1804-1816.[GAO Jun,QIAN Qing,LONG Lingli, et al.Accretionary orogenic process of West Tianshan[J].Geological Bulletin of China,2009

    ,28(12):1804-1816.]

    [19] 万天丰, 朱鸿. 古生代与三叠纪中国各陆块在全球古大陆再造中的位置与运动学特征[J]. 现代地质, 2007, 21(1):1-13.

    [Wan Tianfen,Zhu Hong.Positions and kinematics of Chinese continental blocks in restruction of Global paleo-continents for Paleozoic and Triassic[J].Geoscience,2007,27(1):1-13.]

    [20]

    Torsvik TH, Burke K, Steinberger B, et al. Diamonds sampled by plumes from the core-mantle boundary[J]. Nature, 2010, 466:352-355,Torsvik TH, Steinberger B, Gurnis M, et al. Plate tectonics and net lithosphere rotation over the past 150my[J]. Earth and Planetary Science Letters, 2010, 291:106-112.

    [21]

    Evans DAD. True polar wander and supercontinents[J]. Tectonophysics, 2003, 362:303-320.

    [22]

    Cocks LRM, Torsvik TH. The dynamic evolution of the palaeozoic geography of eastern asia[J]. Earth-Science Reviews, 2013, 117:40-79.

    [23]

    Hochard C, Stampfli G. Gis and Geodatabases Application to Global scale Plate Tectonics Modelling[M]. Lausanne,univ. of Lausanne,2008.

    [24]

    Gurnis M, Turner M, Zahirovic S, et al. Plate tectonic reconstructions with continuously closing plates[J]. Computers & Geosciences, 2012, 38:35-42.

    [25]

    Hartz EH, Torsvik TH. Baltica upside down:A new plate tectonic model for rodinia and the iapetus ocean[J]. Geology, 2002, 30:255-258.

    [26]

    van Staal CR, Whalen JB, Valverde-Vaquero P, et al. Pre-carboniferous, episodic accretion-related, orogenesis along the laurentian margin of the northern appalachians[J]. Geological Society, London, Special Publications, 2009, 327:271-316.

    [27]

    von Raumer JF, Stampfli GM. The birth of the rheic ocean-early palaeozoic subsidence patterns and subsequent tectonic plate scenarios[J]. Tectonophysics, 2008, 461:9-20.

    [28]

    Cawood PA. Terra australis orogen:Rodinia breakup and development of the pacific and iapetus margins of gondwana during the neoproterozoic and paleozoic[J]. Earth-Science Reviews, 2005, 69:249-279.

    [29]

    Dobretsov NL, Buslov MM, Vernikovsky VA. Neoproterozoic to early ordovician evolution of the paleo-asian ocean:Implications to the break-up of rodinia[J]. Gondwana Research, 2003, 6:143-159.

    [30]

    Li J-Y. Permian geodynamic setting of northeast china and adjacent regions:Closure of the paleo-asian ocean and subduction of the paleo-pacific plate[J]. Journal of Asian Earth Sciences, 2006, 26:207-224.

    [31] 王兴安. 华北板块北缘中段早古生代-泥盆纪构造演化[D]. 长春,吉林大学, 2014.[WANG Xingan.Tectonic evolution of the central segment of the northern margin of the north china plate from early paleozoic to devonian[D].Chang Chun,univ. of Jilin,2014.]
    [32] 黄宝春, 周姚秀, 朱日祥. 从古地磁研究看中国大陆形成与演化过程[J]. 地学前缘, 2008, 15(3):348-359.

    [HUANG Baochun,ZHOU Yaoxiu,ZHU Rixiang.Disscussions on the phanerozoic evolution and formation of continental China,based on paleomagnetic studies[J].Earth Science Frontier,2008,15(3):348-359.]

    [33]

    Bradley DC. Passive margins through earth history[J]. Earth-Science Reviews, 2008, 91:1-26.

    [34] 李三忠,余珊,赵淑娟,等.超大陆与全球板块重建派别[J].海洋地质与第四纪地质,2014,34(6):97-117.

    [LI Sanzhong,YU Shan,ZHAO Guochun,et al.Schools of thought on supercontinent and global plate reconstruction[J].Marine Geology and Quaternary Geology,2014,34(6):97-117.]

    [35]

    Meert JG, Van der Voo R, Powell CM, et al. A plate-tectonic speed limit?[J].Nature,1993,363:216-217.

  • 期刊类型引用(17)

    1. 董鑫旭,周兴海,李昆,蒲仁海,王爱国,关蕴文,张鹏. 海上稀疏井区高精度地层格架约束下的地震沉积学刻画——以东海盆地西湖凹陷中央背斜带X区块古近系花港组为例. 石油与天然气地质. 2024(01): 293-308 . 百度学术
    2. 李宣玥. XH凹陷中南部背斜带油气分布特征与成藏主控因素. 海洋地质前沿. 2024(06): 75-83 . 百度学术
    3. 熊平,刘英辉,娄敏,程超,丁芳,胡望水,涂智杰. 东海盆地西湖凹陷X油田辫状河三角洲隔夹层成因与分布. 科学技术与工程. 2024(31): 13327-13334 . 百度学术
    4. 陈春峰,陈忠云,万延周,陈建文,徐东浩,冯桢鸣,俞伟哲,姜雪. 东海盆地西湖凹陷南部花港组上段浅水曲流河三角洲发育特征. 海洋地质与第四纪地质. 2024(06): 175-185 . 本站查看
    5. 王文义,程宏岗,徐淑娟,林琦,黄瑀,董欣怡,李德勇. 东海盆地西湖凹陷中西部花港组物源方向判别与源区性质分析. 中国海上油气. 2023(02): 33-43 . 百度学术
    6. 苗清. 西湖凹陷中央反转构造带中南部花港组母质条件分析. 中国石油和化工标准与质量. 2023(11): 91-93+96 . 百度学术
    7. 彭迎迎,周倩羽. 西湖凹陷南部古近纪花港组沉积环境及聚煤规律研究. 煤炭技术. 2022(06): 67-70 . 百度学术
    8. 庄建建,李喆,巩兴会,万丽芬. 西湖凹陷WBT地区平湖组下段有利储层预测. 海洋石油. 2021(01): 8-14+21 . 百度学术
    9. 陈晨,陈波,付顺龙,陈忠华,谭枭麒,王荐. 反渗透钻井液在东海油气田M7井的应用. 石油化工应用. 2021(10): 28-33 . 百度学术
    10. 胡求红,张昌民,侯国伟,朱锐,陈哲. 马尔科夫链分析在东海陆架盆地花港组沉积微相分析中的应用. 地质与资源. 2020(01): 7-20 . 百度学术
    11. 周荔青,江东辉,张尚虎,周兴海,杨鹏程,李昆. 东海西湖凹陷大中型油气田形成条件及勘探方向. 石油实验地质. 2020(05): 803-812 . 百度学术
    12. 李昆,张沛,张萍,李倩,万丽芬,席敏红. 东海西湖凹陷中央背斜带花港组成藏条件及主控因素分析——以H3气藏为例. 海洋地质与第四纪地质. 2020(05): 127-135 . 本站查看
    13. 李敏,陈博,阮金凤,鲍志东,臧东升,郑金海,肖杭州,史经民. 松辽盆地新民油田下白垩统泉四段浅水三角洲骨架单砂体空间发育特征. 海洋地质与第四纪地质. 2019(04): 46-55 . 本站查看
    14. 刁慧,刘金水,侯读杰,蒋一鸣,张涛,曾文倩. 中国近海断―坳转换期煤系烃源岩特征——以西湖凹陷平湖组烃源岩为例. 海洋地质与第四纪地质. 2019(06): 102-114 . 本站查看
    15. 付行,杜学斌,徐国盛,梁家驹,丁圣斌. 东海宁波构造带深层花港组砂岩储层致密性特征及控制因素. 海洋石油. 2018(01): 1-8 . 百度学术
    16. 杨丽杰,侯读杰,陈晓东,刁慧. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义. 天然气地球科学. 2018(04): 559-571+596 . 百度学术
    17. 何苗,侯国伟,秦兰芝,陆嫣,谢晶晶. 西湖凹陷H构造群及周边花港组沉积环境及砂体刻画. 现代地质. 2018(01): 162-172 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  2613
  • HTML全文浏览量:  333
  • PDF下载量:  47
  • 被引次数: 23
出版历程
  • 收稿日期:  2014-12-10
  • 修回日期:  2015-01-28

目录

    /

    返回文章
    返回