Loading [MathJax]/jax/output/SVG/jax.js

黄河下游大野泽沉积物粒度特征及其对环境演化的指示

魏本杰, 侯战方, 陈诗越, 孟静静, 伏梦璇, 杨丽伟, 刘晓迪, 刘加珍, 陈影影, 衣雅男

魏本杰, 侯战方, 陈诗越, 孟静静, 伏梦璇, 杨丽伟, 刘晓迪, 刘加珍, 陈影影, 衣雅男. 黄河下游大野泽沉积物粒度特征及其对环境演化的指示[J]. 海洋地质与第四纪地质, 2019, 39(3): 151-161. DOI: 10.16562/j.cnki.0256-1492.2018080301
引用本文: 魏本杰, 侯战方, 陈诗越, 孟静静, 伏梦璇, 杨丽伟, 刘晓迪, 刘加珍, 陈影影, 衣雅男. 黄河下游大野泽沉积物粒度特征及其对环境演化的指示[J]. 海洋地质与第四纪地质, 2019, 39(3): 151-161. DOI: 10.16562/j.cnki.0256-1492.2018080301
WEI Benjie, HOU Zhanfang, CHEN Shiyue, MENG Jingjing, FU Mengxuan, YANG Liwei, LIU Xiaodi, LIU Jiazhen, CHEN Yingying, YI Yanan. Grain-size characteristics of Dayeze lake sediments in the lower reach of Yellow River and their environmental implications[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 151-161. DOI: 10.16562/j.cnki.0256-1492.2018080301
Citation: WEI Benjie, HOU Zhanfang, CHEN Shiyue, MENG Jingjing, FU Mengxuan, YANG Liwei, LIU Xiaodi, LIU Jiazhen, CHEN Yingying, YI Yanan. Grain-size characteristics of Dayeze lake sediments in the lower reach of Yellow River and their environmental implications[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 151-161. DOI: 10.16562/j.cnki.0256-1492.2018080301

黄河下游大野泽沉积物粒度特征及其对环境演化的指示

基金项目: 

国家自然科学基金青年项目“历史时期黄河下游安山湖湿地演变及其与黄河-运河关系的研究” 41702373

“历史时期黄河下游湖泊消亡过程及机制与沉积碳埋藏量估算” 41871073

黄土与第四纪地质国家重点实验室开放基金项目“鲁西南安山湖形成、演化与黄河改道变迁的关系研究” SKLLQG1509

国家自然科学基金面上项目“2万年以来黄河下游季风演变及洪水与河道变迁机制研究” 41672345

详细信息
    作者简介:

    魏本杰(1995—),男,硕士研究生,研究方向为湖泊演变与气候变化, E-mail:weibenjie132@163.com

    通讯作者:

    侯战方(1985—),男,博士,讲师,主要从事湖泊演变与气候变化研究,E-mail:houzhanfang@lcu.edu.cn

  • 中图分类号: P736.2

Grain-size characteristics of Dayeze lake sediments in the lower reach of Yellow River and their environmental implications

  • 摘要: 利用黄河下游湖泊大野泽550cm柱状岩芯沉积物粒度分析,结合高精度的AMS 14C年代测定,初步揭示了研究区近1400a来湖泊沉积及环境演化历史。应用沉积物粒度频率分布曲线和概率累积曲线分析,结合沉积物岩性特征,结果发现DYZ-1钻孔地层明显分为两个沉积阶段:550~385cm,以深黑色和青灰色黏土质粉砂和粉砂质黏土为主,属湖沼相沉积物环境;385~30cm,以棕黄色和浅黄色黏土质粉砂为主,为河流相沉积环境。综合粒度组成和粒度参数分析结果,大野泽近1400a环境演变可以大致划分为5个阶段:625—940 AD期间,为湖泊水位较低沼泽相沉积环境,气候较干冷;940—1250 AD期间,在中世纪暖湿气候背景下,湖盆频受黄河洪水入注,湖盆扩张,水位抬高;1194 AD开始,黄河河道南迁至黄海入海,大野泽逐渐演变为河流相沉积;1250—1540 AD期间,河流水动力较强,气候较湿润;1540—1860 AD期间,河流水动力表现出减弱趋势,气候转干冷,对应小冰期;1860 AD之后,黄河再次改道北迁至渤海入海,大野泽再次接受黄河洪泛注入,但由于前期湖区抬高成陆,该区域仅作为黄河泥沙承载区。
    Abstract: This paper is devoted to the grain-size characteristics of a 550-cm-long sediment core, which was retrieved from the Lake Dayeze, a waterbody used to connect to the Lower Yellow River (LYR), with the purpose to reveal the environmental changes of the LYR during the last 1400a. The sediments are dated by high-precision AMS 14C dating. According to the grain size frequency distribution curve and cumulative probability curve of the sediments, in addition to lithological characteristics, the changes in depositional environment of the study area is divided to two phases: the 550~385cm composed of dark-grey clay and dark-grey caesious clay, belongs to a lacustrine sedimentary environment; the 385~30cm composed of yellow-brown silt and light yellow clay, is deposited in a fluvial environment. By Integration of grain size composition and grain size parameters, as well as historical documents, we inferred that the lake has experienced five distinct stages of environment evolution during the last 1400 years. There was a low level swamp environment during 625—940 AD, under dry and cold climate conditions in the study area. Then the lake level rose and the lake expanded due to flooding, under warm and wet climate conditions during 940—1250 AD, corresponding to the Medieval Warm Epoch. During 1250—1540 AD, it was characterized by strong hydrodynamic force under a fluvial environment and relatively humid climate, and then, the river hydrodynamic weakened, the climate became dry and cold again, corresponding to Little Ice Age. The channel of the LYR shifted back and discharged into Bohai Bay, by the 1855 AD flooding event. As a result, the study area was affected by the flooding events of the LYR again.
  • 周期阶坎是海底陆坡常见的地貌单元,以连续的波状底形为特征,是深水沉积体系的重要场所,是现今海洋学研究的热点。周期阶坎一般发育环境分为海底和陆上两类,其中在海底陆坡和坡折位置处向上游迁移的长波状底形最为常见。国外学者Paker和他的助手首先在明渠模拟实验中观察到一系列向上游迁移的台阶状底形,并正式提出“周期阶坎(cyclic steps)”一词[]。国内钟广法等[-]最早发现并报道了南海东北部陆坡区海底峡谷谷底、越岸区和出口部位存在大量超临界流成因的大型沉积物波,将其解释为“周期阶坎”。大多学者对海底周期阶坎进行了研究[-],但对于琼东南地区现今海底周期阶坎的研究颇少。在琼东南地区,以往学者更加关注于海底峡谷的研究,并发现在海底峡谷或水道中常伴生一种类似台阶状的底形,且都有规律地朝一个方向运动,最初认为这种底形为海底沉积物波[]。然而关于琼东南陵水凹陷现今海底是否为周期阶坎还有待考究,研究区域内阶坎底形和其形成机制有助于理解海底流体活动,并为其他区域海底地貌单元识别提供参考。

    本文基于琼东南盆地陵水凹陷浅层285 km2三维地震数据,对周期阶坎的构型和形成原因进行了分析。南海陆坡周期阶坎研究对加深海底地貌单元以及重力流沉积发育控制因素具有重要的意义。

    琼东南盆地位于南海北部大陆边缘,地质构造复杂多变,属于陆架较窄和陆坡较陡的非典型被动大陆边缘性盆地[]。物源主要来自越南和海南岛的双物源供给,发育滑塌体、峡谷和海底扇等沉积体系[-]。陆坡自西北向东南坡度整体逐渐变缓,陆坡海底发育大量的水道和大规模的重力流沉积[]

    琼东南盆地陆坡区自西向东按照陆坡的宽度、有无明显的坡折带和陆坡倾角大小,分为盆地西部、盆地中部和盆地东部。陵水凹陷研究区位于琼东南盆地中部、水深700~1500 m的上陆坡区,坡度大约为2°~16°(图1a)。

    图 1 琼东南盆地位置图(a)及研究区海底地形图(b)
    图  1  琼东南盆地位置图(a)及研究区海底地形图(b
    L1测线号6053,研究区最西侧;L2、L3测线号分别为6353、6653,依次靠近水道左侧区域;L4测线号6953,左侧水道壁附近;L5测线号7253,水道内部;L6测线号7553,右侧水道壁附近;L7和L8测线号分别为7854、8147,研究区最东侧。
    Figure  1.  The location map(a)and the 3D topographic map of the study area(b
    L1 inline 6053, on the westernmost side of the study area; L2, L3 inline 6353 and 6653, respectively, close to the left side of the channel; L4 inline 6953, near the left side of the channel wall; L5 inline 7253, channel Inside; L6 inline 7553, on the right side of the channel wall; L7 and L8 inline are 7854 and 8147 respectively, the easternmost side of the study area.

    本研究所使用的数据主要源于中国海洋石油有限公司从琼东南盆地获得并拥有的约300 km2的三维地震数据。研究区三维地震数据面元大小为12.5 m×12.5 m(Inline×Crossline),采样率为2 ms,频带宽度为6~90 Hz,主频约45 Hz,最大垂向分辨率(λ/4)约15 m。

    利用GeoFrame软件对研究区现今海底浅层目的层同相轴进行解释,解释的网格精度为10×10(CDP),并将解释的层位进行时深转换,提取地震属性倾角、方位角和均方根(图2a为倾角属性平面图)等。利用解释的三维地震层位数据结合Surfer软件绘制了现今海底地形图(图1b)。研究区海底地形图揭示现今海底发育阶梯状地貌,陆坡上存在多条小水道和一条清晰的大型水道(由两支小水道复合而成即水道复合体),水道壁附近台阶形态杂乱(图1b))。

    图 2 琼东南盆地现今海底阶梯地形分析图
    图  2  琼东南盆地现今海底阶梯地形分析图
    a. 倾角属性平面图(红色线是地震剖面所在位置图),b. 典型地震剖面图,c. 阶梯几何构型图。
    Figure  2.  Present submarine cyclic step topography of the Qiongdongnan Basin
    a. dip_ attribute map, b. typical seismic profile, c. stepped geometric configuration diagram.

    周期阶坎的识别依据主要基于三点:① 周期阶坎经常发育在高坡度和坡折带区域[-];② 当坡度超过0.6°时,浊流可能达到超临界流状态[-];③ 周期阶坎发育的波长较长,多为链状,不对称,向上游迁移,形态似台阶状[-, ]。研究区发育的底形所处位置、坡度以及形态特征与形成“周期阶坎”的条件吻合。

    NW-SE向剖面上周期阶坎(图2b)表现为波状亚平行结构地震相,多组同相轴互相平行并呈波浪状起伏,波形起伏较小,不对称,波脊逆坡迁移。波状底形是由波脊和波谷相间构成,似阶梯状,高度为6~10 m。周期阶坎类型为长波形、不对称、似正弦曲线多数向上游迁移,部分向下游迁移的新月形。

    由于海水与地层之间的密度差,上下地层的振幅反射特征发生了明显变化,波阻抗系数增大,因此地震同相轴连续性较好,利于研究周期阶坎的具体形态特征。选取8条测线(图1b中L1—L8)计算和分析每一测线上周期阶坎的几何构型(图2c)。使用几何构型参数(波长(L)、倾角(θ)、波高(H)、迎流面长度(Lstep)、背流面长度(Llee)、迎流面夹角(α)、背流面夹角(β)以及迎流面与背流面长度的比值(R)),刻画海底阶梯形态。

    数据统计结果表明:单个周期阶坎波高4~10 m,波长20~150 m,倾角2°~14°,波长/波高为4~30。研究区自西向东(自L1到L8)阶坎波长随着坡度变缓依次增加(图3),即区域内周期阶坎之间的间距不等。研究区水道内部的阶坎波长(L5)较水道外部波长变化曲线趋势更加明显。水道壁附近(L4、L6)波长随深度变化数据有跳跃变化。单个周期阶坎的迎流面与背流面随深度变化:① 长度:迎流面长20~140 m,背流面长10~40 m。迎流面长度波动范围更广,背流面长度变化则更加集中(图4);② 角度:迎流面角度0.1°~0.15°,背流面角度0.2°~0.8°。整个曲线趋势总体是背流面角度远大于迎流面,极少数迎流面角度大于背流面角度。随深度变化整个8条测线上的周期阶坎:① 迎流面和背流面长度均逐渐增加,但迎流面长度增长趋势远大于背流面;② 迎流面角度变化集中,背流面角度波动范围更广。

    图 3 波长随深度变化曲线图 (测线位置见图1b)
    图  3  波长随深度变化曲线图 (测线位置见图1b
    Figure  3.  The relation between wavelength and depth
    图 4 迎流面、背流面长度随深度变化曲线图
    图  4  迎流面、背流面长度随深度变化曲线图
    测线位置与图1b 中L1—L8测线位置一致。
    Figure  4.  The relation of the length of stoss and lee sides with depth
    The position of survey line is consistent with the position of survey line L1-L8 in Fig. 1b.

    琼东南盆地陵水凹陷现今海底开放陆坡上分布成片大面积的周期阶坎底形是如何形成的?有哪些有利条件导致了这些底形的形成?针对这些问题,在前人的研究基础之上综合研究区所处地质环境对形成区域周期阶坎底形的形成过程和成因机制进行了详细的探究。陵水凹陷现今海底发育的周期阶坎底形分布范围广、数量多、类型多而集中。

    周期阶坎的形成与流体动力学有关。区域内发育的周期阶坎底形是由于浊流携带的陆源碎屑物质通过海底峡谷或水道重力流流体通道从陆架途径陆坡向下游搬运,在搬运途中随流体动力学参数弗劳德数(Fr=U/RCgD,其中,R:浊流中沉积物折算密度,C:浊流中平均体积浓度,D:浊流的厚度)变化而形成的一种阶梯状底形[]。研究区成片大面积分布的周期阶坎底形足够说明水流携带的泥沙等碎屑物质能量强。靠近上陆坡区,浊流能量强,单位时间内形成的周期阶坎底形数目多,在立体图上显示出它们之间排列更加紧凑(图1b)。靠近下陆坡区,坡度减小,水动力减弱,沉积物沉积厚度变薄,单位时间形成的周期阶坎数目减小,故形成的周期阶坎底形在下陆坡间距增大(图1b)。单独一条测线上形成的周期阶坎形态类同,但大小不同。一个完整的周期阶坎形成,需要两种水流流态:① 水流携带的泥沙等碎屑物质从阶梯底部向顶部运动过程中,由于水流流速不断地减小,流体从上一个阶段的超高速超临界流结束不断地向亚临界流转化,一部分水流动能被紊流消散,剩余的动能转化为位能,会导致液面升高,即水流产生的惯性小于流体自身的重力,形成亚临界流,此时Fr<1[, ]。② 当Fr>1时,水流向下游流动的惯性大于向上游传播的波速,产生超临界流,此时不可能有向上游移动的波[],从而形成长波长的迎流面。理想状态下,流体从第一个阶坎底部向顶部水力跳跃完成第一个周期阶坎,接下来将剩余的能量用来完成第二个周期阶坎,依次类推,直到水跃能量消失,底形将不存在。周期阶坎的形成是浊流从超临界流到亚临界流过程中水力跃变形成的底形。

    周期阶坎由一系列连续的陡峭背流面和平缓迎流面组成,并且经常在背流面与迎流面转换区域形成冲沟或深坑[]。依据侵蚀作用的强弱,分为三种类型:① 沉积型周期阶坎。水流中携带的沉积物很难被带走从而在迎流面卸载,当超临界流流经每个阶梯底部时,向亚临界流转化并产生水跃。水流继续沿着迎流面上倾方向流动,流速逐渐减缓,水流能态进一步降低,水流侵蚀作用被削弱因而以沉积作用为主[, ]。② 过渡型周期阶坎。水流能态不足以达到超临界流形成水跃,沉积作用与侵蚀作用相当。③ 侵蚀型周期阶坎。当水流经过阶梯顶点后位能最大,位能沿背流面下倾方向不断加速转化为动能,即水流流速逐渐增大使得浊流携带的碎屑物质很难被保留下来,其水流流态从亚临界流向超临界流转化,因此以侵蚀作用为主,从而形成的阶坎底形背流面陡峭[]。长波状周期阶坎的形成,迎流面以沉积作用为主,背流面以侵蚀作用为主。

    研究区周期阶坎迎流面长度主要大于背流面长度,在规模上属于中型沉积型周期阶坎。随深度的增加,沉积物在平缓的一侧不断加积,使得周期阶坎迎流面一侧长度不断变长。周期阶坎平缓的迎流面和陡峭的背流面,使得沉积物发生了沉积/侵蚀差异作用,最终沉积波向浊流上游方向迁移逐渐形成月牙状[, , -]。另外,迎流面长度与背流面长度比值大于数值1,即周期阶坎底形呈不对称性。周期阶坎迎流面主要是以亚临界流沿上倾方向加速沉积形成的平缓状斜坡,而背流面是超临界流沿下倾方向水跃侵蚀作用形成的陡峭坡[, ],说明迎流面沉积粒度比背流面粗。周期阶坎呈现的有规律的向下游排列的线性构造底形指示沉积物向下游搬运,其沉积波上游方向粒度最粗,向下游方向粒度逐渐变细。

    近年来,众多学者研究认为周期阶坎在海底广泛存在[, , ]。Cattane等[]研究认为周期阶坎的形成可能是浊流与原先存在的不规则地形之间相互作用,但Kubo等质疑Cattane等只是简单地夸大了地形对形成周期阶坎的影响,并没有考虑到浊流水力跃变输送的能量。之后,Spinewine等[]实验结果和Kostic等[]数值模拟结果均一致表明持续的浊流易于形成周期阶坎,与预先存在的地形没有直接的联系。王海荣等[]认为浊流形成的沉积波具有迁移特征,周期阶坎的形成是多种成因共同的结果。在前人的研究基础之上,笔者从浊流和坡度两方面对研究区的周期阶坎进行了分析。

    浊流是重力流的一种表现形式,浊流的流体动力学影响了深水沉积体系结构单元的演化,可以分为超临界流和亚临界流两种。浊流内部携带的碎屑物质属于高密度流体,流速一般很大[]。研究区沉积波的地震剖面显示下切水道十分发育,周期阶坎的形成是浊流作用的结果。

    周期阶坎与浊流有关的因素有:① 与浊流中高密度流体密切联系。陵水凹陷现今海底陆坡区靠近物源,地形高差大,偶然的事件沉积(异重流)引起泥砂混杂持续性、密度高的沉积物容易形成周期阶坎底形,且Cartigny数值模拟实验[]证实,沉积物浓度是发生水力跃变的有力因素。水跃往往发生在沉积物浓度确定的范围内,浓度越大,形成周期阶坎的个数越多,规模越大[]。② 与浊流粒度和沉积速率有关。丰沛的碎屑物质从“源”系统途经研究区汇入到深海盆地,沉积物沉积速率逐渐降低,沉积物粒度由粗变细。整个周期阶坎的迎流面长度自L1到L8不断地变长,其中沉积物的沉积厚度迎流面比背流面厚,形成的周期阶坎底形往往不稳定。研究区西部沉积物粒度比东部粗,西部沉积物的沉积速率比东部高。高的沉积速率易于波状底形的完整保存,而且容易形成不对称底形[]。③ 与浊流的流量和流速有关。随流速的增加底形会依次出现:无颗粒运动的平坦床沙、沙纹、沙浪、沙丘、过渡丘(或低角度沙丘)、平坦床沙、周期阶坎、流槽和凹坑[, -]。随浊流流量的增加,超临界流的侵蚀能力逐渐增强,形成水力跃变的可能性越高,更容易形成周期阶坎底形。在前人理论研究基础之上,笔者认为研究区浊流的流速高而稳定,因此形成了大范围的周期阶坎底形。

    周期阶坎的形成、演化过程与发育在陆架边缘斜坡和峡谷水道中的浊流体系密不可分[]。到目前为止,部分学者已经证实了浊流形成的沉积波能够以周期阶坎底形出现[, , , ]。周期阶坎底形甚至在高山流水、冰川中都可以出现。

    地形坡度是控制超临界流体发生水跃形成周期阶坎底形的关键因素。地形坡度较大时,浊流携带的沉积物位能高,其沿斜坡分力较大,侵蚀作用明显,因此形成侵蚀型和粗粒度的沉积型周期阶坎;随研究区域坡度的变缓,浊流所携带的沉积物能量逐渐递减,流体的搬运能力相应地也逐渐减弱,水力跳跃后在阶梯顶部需要的能量更大,其缓冲距离加大,大量的沉积物开始堆积,粒度较细的沉积物开始沿着上倾斜坡不断地堆积形成长高比不断增大的沉积型周期阶坎[, -]。鲁勇的水槽实验表明,在坡道转换处会发生水跃,其水跃强度随坡度的增加而增加。在坡度、水流量和体积比浓度相等的情况下,坡上的平均沉积厚度小于坡下平均沉积厚度,即迎流面沉积速率与背流面的沉积速率不同[]。一般情况下,陡峭的坡度和高密度的弗劳德数有利于周期阶坎的形成[]。然而,坡度超过0.92°形成周期阶坎底形可能性会降低。坡度越陡,流体重力沿斜坡的分量增大促使流体不断加速,从而抑制流体内产生水跃的能量且增大了转化为亚临界流的可能性[]

    坡度是超临界流水形成周期阶坎底形的前提要素[, ]。在一定的条件下,由陡峭的斜坡过渡到相对平缓的斜坡可能会导致浊流发生水力跃变[]

    (1)陵水凹陷现今陆坡海底具备的坡度较陡、近物源等为周期阶坎底形的发育提供了有利条件,周期阶坎底形是构成深水沉积体系的重要沉积单元。

    (2)陵水凹陷现今海底发育一条宽约6.5 km具有明显侵蚀特征的大型水道,是构成“源-汇”系统的重要通道。水道内外发育的周期阶坎底形在地震剖面上表现为连续波状亚平行强振幅地震相。周期阶坎的发育指示现今海底浊流流速急剧,流量大。

    (3)通过对周期阶坎底形形成机制进行分析,认为浊流和坡度是形成周期阶坎的最主要的因素。周期阶坎在坡度适中、浊流发育的地带容易形成。

    致谢: 中国科学院南京地理与湖泊研究所王苏民研究员指导了野外采样;美国明尼苏达大学大湖研究中心于世永教授在论文写作过程中提供了有益的建议。谨此感谢!
  • 图  1   研究区及大野泽柱状样采样点位置

    Figure  1.   Map of study area and sampling locations of ancient Lake Dayeze

    图  2   大野泽DYZ-1柱状钻孔地层、岩性、年代序列及沉积速率

    Figure  2.   Stratigraphy, lithology, chronology, and sedimentation rates of Core DYZ-1 from ancient Lake Dayeze

    图  3   沉积物平均粒径、粒度组成及粒度参数随深度的变化

    Figure  3.   Changes in mean grain size, grain size composition, and grain size parameters with depth of Core DYZ-1

    图  4   沉积物粒度的频率曲线特征

    Figure  4.   Frequency curve of sediment grain sizes

    图  5   沉积物粒度的概率累积曲线特征

    Figure  5.   Cumulative probability curve of sediment grain sizes

    表  1   DYZ-1柱状样的AMS 14C年龄

    Table  1   AMS-14C ages of Core DYZ-1

    深度/cm 样品编号 材料 年龄/aBP 校正年龄/AD
    30 DYZ-11-30 螺壳 现代 现代
    398 DYZ-11-398 植物残体 821±21 1178—1265
    523 DYZ-11-523 芦苇叶片 1115±26 935—972
    530 DYZ-11-530 螺壳 1171±35 804—894
    下载: 导出CSV
  • [1]

    Li S, Brian F. Flood management on the lower Yellow River: hydrological and geomorphological perspectives[J]. Sedimentary Geology, 1993, 85(1-4): 285-296. doi: 10.1016/0037-0738(93)90089-N

    [2]

    Chen Y Z, Syvitski J P M, Gao S et al. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China[J]. Ambio, 2012, 41(7): 682-698. doi: 10.1007/s13280-012-0290-5

    [3] 喻宗仁, 窦素珍, 赵培才等.山东东平湖的变迁与黄河改道的关系[J].古地理学报, 2004, 6(4): 469-479. doi: 10.3969/j.issn.1671-1505.2004.04.009

    YU Zhongren, DOU Shuzhen, ZHAO Peicai et al. Relationship between changes of Dongping Lake and shiting of the Yellow River in Shandong Province[J]. Journal of Palaeogeography, 2004, 6(4): 469-479. doi: 10.3969/j.issn.1671-1505.2004.04.009

    [4] 张祖陆, 聂晓红, 卞学昌.山东小清河流域湖泊的环境变迁[J].地理学报, 2004, 6(2): 226-233. doi: 10.3969/j.issn.1671-1505.2004.02.011

    ZHANG Zhulu, NIE Xiaohong, BIAN Xuechang. Environmental change of lakes in Xiaoqinghe River drainage, Shandong Province[J]. Journal of Palaeogeography, 2004, 6(2): 226-233. doi: 10.3969/j.issn.1671-1505.2004.02.011

    [5]

    Chen Y Y, Chen S Y, Ma C M et al. Palynological evidence of natural and anthropogenic impacts on aquatic environmental changes over the last 150 years in Dongping Lake, North China[J]. Quaternary International, 2014, 349: 2-9. doi: 10.1016/j.quaint.2014.04.033

    [6] 张振克, 王苏民, 沈吉, 等.黄河下游南四湖地区黄河河道变迁的相互沉积响应[J].湖泊科学, 1999, 11(3): 232-236. http://www.cnki.com.cn/Article/CJFDTotal-FLKX199903006.htm

    ZHANG Zhenke, WANG Sumin, SHEN Ji et al. River channel changes recorded by lake sediments in Nansihu Lake, the lower reaches of the Yellow River[J]. Journal of Lake Sciences, 1999, 11(3): 232-236. http://www.cnki.com.cn/Article/CJFDTotal-FLKX199903006.htm

    [7] 张汉洁.黄河下游山东段古湖泽的变迁[J].人民黄河, 1997, 5: 67-69. http://www.cnki.com.cn/Article/CJFDTotal-RMHH198705016.htm

    ZHANG Hanjie. Process of lakes along the lower Yellow River in ancient time[J]. Yellow River, 1997, 5: 67-69. http://www.cnki.com.cn/Article/CJFDTotal-RMHH198705016.htm

    [8] 刘德岑.从大野泽到梁山泊[J].西南师范大学学报:哲学社会科学版, 1990, 2: 20-31. http://d.old.wanfangdata.com.cn/Thesis/Y2499664

    LIU Decen. From Dayeze Lake to Liangshanpo Lake[J]. Journal of Southwest China Normal University (Philosophy and Social Sciences Edition), 1990, 2: 20-31. http://d.old.wanfangdata.com.cn/Thesis/Y2499664

    [9] 要吉花, 谭利华, 魏全伟, 等.黄河下游环境变迁在巨野钻孔沉积特征上的响应[J].北京师范大学学报:自然科学版, 2005, 41(2): 199-203. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb200502024

    YAO Jihua, TAN Lihua, WEI Quanwei et al. Environment changes of the backward position in the Yellow River responds to Juye deposit characteristic[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(2): 199-203. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb200502024

    [10]

    Shen J. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine archives[J]. Chinese Science Bulletin, 2013, 58(1): 17-31. doi: 10.1007/s11434-012-5510-7

    [11]

    Xiao J L, Chang Z G, Fan J W et al. The link between grain-size components and depositional processes in a modern clastic lake[J]. Sedimentology, 2012, 59: 1050-1062. doi: 10.1111/sed.2012.59.issue-3

    [12]

    Guan H C, Zhu C, Zhu T X, et al. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu Lake basin: Implications for the origin, palaeoclimatic change and provenance[J]. Journal of Asian Earth Sciences, 2016, 117: 170-183. doi: 10.1016/j.jseaes.2015.12.013

    [13] 李红军, 刘月, 程岩, 等.鸭绿江口沉积粒度特征及其对沉积环境演化的指示[J].海洋地质与第四纪地质, 2017, 37(3): 58-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=50b01f6b-bdc7-4bb4-9aef-45ecf9eafb6d

    LI Hongjun, LIU Yue, CHENG Yan et al. Characteristics of sediment grain size at Yalu river estuary and implications for depositional environment[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 58-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=50b01f6b-bdc7-4bb4-9aef-45ecf9eafb6d

    [14] 徐利强, 徐芳, 周涛发.巢湖沉积物粒度特征及其沉积学意义[J].地理科学, 2015, 35(10): 1318-1324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201510015

    XU Liqiang, XU Fang, ZHOU Taofa. Grain-size of lacustrine sediments from Chaohu lake and its sedimentary implications[J]. Scientia Geographica Sinica, 2015, 35(10): 1318-1324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201510015

    [15] 张驰, Wünnemann B, 曾琳, 等.额济纳盆地GN100钻孔不同沉积相的粒度特征[J].高校地质学报, 2015, 21(4): 736-746. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201504019

    ZHANG Chi, Wünnemann B, ZENG Lin et al. Grain-size characteristics of different sedimentary facies from the core GN100 in the Ejina basin[J]. Geological Journal of China Universities, 2015, 21(4): 736-746. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201504019

    [16]

    Liu X X, Vandenberghe J, An Z S et al. Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 41-51. doi: 10.1016/j.palaeo.2016.02.005

    [17]

    Tian F, Wang Y, Liu J. Late Holocene climate change inferred from a lacustrine sedimentary sequence in southern Inner Mongolia, China[J]. Quaternary International, 2017, 452: 22-32. doi: 10.1016/j.quaint.2017.01.029

    [18] 胡飞, 杨玉璋, 张居中, 等.巢湖地区末次冰消期—早全新世沉积环境盐湖[J].海洋地质与第四纪地质, 2015, 35(1): 153-162. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=913f9245-3afe-4fcf-aa05-a4fd837a1350

    HU Fei, YANG Yuzhang, ZHANG Juzhong et al. Sedimentary environmental evolution during last deglaciaiton and early Holocene in Chaohu region[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 153-162. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=913f9245-3afe-4fcf-aa05-a4fd837a1350

    [19] 赵培才, 梅如波, 高学军等.我国中央山系东段演化及其对黄河河道及东平湖的影响[J].山东农业大学学报:自然科学版, 2004, 35(3): 391-394. http://d.old.wanfangdata.com.cn/Periodical/sdnydxxb200403018

    ZHAO Peicai, MEI Rubo, GAO Xuejun et al. The evolution of the eastern sector of the central mountain system and its influence on the channel of Yellow River and Dongping huwetiand[J]. Journal of Shandong Agricultural University (Natural Science), 2004, 35(3): 391-394. http://d.old.wanfangdata.com.cn/Periodical/sdnydxxb200403018

    [20]

    Zhang J, Lin Z. Climate of China[M]. New York: Wiley, 1992.

    [21] 李吉甫.元和郡县志(第一版)卷十一[M].上海:上海古籍出版社, 1987: 262.

    LI Jipu. Yuanhe County annals(First edition), Volume 11[M], Shanghai: Shanghai Ancient Book Press, 1987: 262.

    [22] 脱脱等.《金史-食货志》四十七卷(第一版)[M].北京:中华书局, 1975: 1047.

    TUO Tuo et al. 《The history of Jin dynasty-Food and Goods》 Volume 47, First edition[M]. Beijing: Zhonghua Book Bureau, 1975: 1047.

    [23]

    Zhow W J, Lu X F, Wu Z K, et al. Peat record reflecting Holocene climatic change in the Zoigê Plateau and AMS radiocarbon dating[J]. Chinese Science Bulletin, 2002, 47(1): 66-70. doi: 10.1360/02tb9013

    [24] 鹿化煜, 安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究[J].科学通报, 1997, 42(3): 2535-2538. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199723016.htm

    LU Huayu, AN Zhisheng. Experiment study on the influence of pretreatment method on the grain size measurement of loess sediments[J]. Chinese Science Bulletin, 1997, 42(3): 2535-2538. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199723016.htm

    [25] 何华春, 丁海燕, 张振克, 等.淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义[J].地理科学, 2005, 25(5): 591-596. http://d.old.wanfangdata.com.cn/Periodical/dlkx200505013

    HE Huachun, DING Haiyan, ZHANG Zhenke et al. Grain-size characteristics and their environmental significance of Hongze Lake sediments[J]. Scientic Geographica Sinica, 2005, 25(5): 591-596. http://d.old.wanfangdata.com.cn/Periodical/dlkx200505013

    [26]

    Reimer P J, Baillie M G L, Bard E, et al. Intcal 09 and Marine 09 radiocarbon age calibration curves, 0-50000 years cal BP[J]. Radiocarbon, 2009, 51: 1111-1150. doi: 10.1017/S0033822200034202

    [27] 侯战方, 陈诗越, 孟静静等.近1200a来黄河下游梁山泊沉积记录的环境变迁[J].湖泊科学, 2018, 30(1): 245-255. http://d.old.wanfangdata.com.cn/Periodical/hpkx201801024

    HOU Zhanfang, CHEN Shiyue, MENG Jingjing. Environmental changes in the lower reaches of Yellow River area during the last 1200 years revealed by multiple proxies from the Lake Liangshanpo[J]. Journal of Lake Sciences, 2018, 30(1): 245-255. http://d.old.wanfangdata.com.cn/Periodical/hpkx201801024

    [28]

    Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211

    [29] 朱诚, 马春梅, 王慧麟, 等.长江三峡库区玉溪遗址T0403探方古洪水沉积特征研究[J].科学通报, 2007, 53(1): 1-16. doi: 10.3321/j.issn:0023-074X.2007.01.001

    ZHU Cheng, MA Chunmei, WANG Huilin et al. Characteristics of paleoflood deposits archived in unit T0403 of Yuxi site in the Three Gorges reservoir areas, China[J]. Chinese Science Bulletin, 2007, 53(1): 1-16. doi: 10.3321/j.issn:0023-074X.2007.01.001

    [30] 孙千里, 周杰, 肖举乐.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质, 2001, 21(1): 63-95. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=203a1a3e-6f78-4212-8567-e32af4e5b9d4

    SUN Qianli, ZHOU Jie, XIAO Jule. Grain-size characteristics of lake Daihai sediments and its paleaoenvironment significance[J]. Marine Geology & Quaternary Geology, 2001, 21(1): 63-95. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=203a1a3e-6f78-4212-8567-e32af4e5b9d4

    [31] 董进, 王永, 张世永, 等.内蒙古黄旗海全新世湖泊沉积物粒度分析及其沉积学意义[J].地质通报, 2014, 33(10): 1514-1522. doi: 10.3969/j.issn.1671-2552.2014.10.007

    DONG Jin, WANG Yong, ZHANG Shiyong et al. Grain size analysis of Holocene lacustrine sediments in the Huangqihai Lake of Inner Mongolia and its sedimentological significance[J]. Geological Bulletin of China, 2014, 33(10): 1514-1522. doi: 10.3969/j.issn.1671-2552.2014.10.007

    [32] 殷志强, 秦小光, 吴金水, 等.湖泊沉积物粒度多组分特征及其成因机制研究[J].第四纪研究, 2008, 28(2): 345-353. doi: 10.3321/j.issn:1001-7410.2008.02.018

    YIN ZhiQiang, QIN Xiaoguang, WU Jinshui et al. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments[J]. Quaternary Sciences, 2008, 28(2): 345-353. doi: 10.3321/j.issn:1001-7410.2008.02.018

    [33]

    Xiao J L, Chang Z G, Si B, et al. Partitioning of grain-size components of Dali Lake core sediments: Evidence for lake-level changes during the Holocene[J]. Journal of Paleolimnology, 2009, 42: 249-260. doi: 10.1007/s10933-008-9274-7

    [34] 陈敬安, 万国江, 张峰, 等.不同时间尺度下的湖泊沉积物环境记录——以沉积物粒度为例[J].中国科学D辑, 2003, 33(6): 563-568. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200306010

    CHEN Jingan, WAN Guojiang, ZHANG Feng et al. lacustrine sediments records of different time scales-a case study of sediment size[J]. Science in China (Series D), 2003, 33(6): 563-568. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200306010

    [35] 彭晓彤, 周怀阳, 叶瑛, 等.珠江河口沉积物粒度特征及其对底层水动力环境的指示[J].沉积学报, 2004, 22(3): 487-493. doi: 10.3969/j.issn.1000-0550.2004.03.016

    PENG Xiaotong, ZHOU Huaiyang, YE Ying et al. Characteristics of sediment grain size and their implications for bottom hydrodynamic environment in the Pearl River Estuary[J]. Acta Sedimentologica Sinica, 2004, 22(3): 487-493. doi: 10.3969/j.issn.1000-0550.2004.03.016

    [36]

    Li SH, Guo W, Yin Y, et al. Environmental changes inferred from lacustrine sediments and historical literature: A record from Gaoyou Lake, eastern China[J]. Quaternary International, 2015, 380/381: 350-357. doi: 10.1016/j.quaint.2015.01.010

    [37] 袁旭音, 陈骏, 季峻峰, 等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应[J].沉积学报, 2002, 20(3): 427-434. doi: 10.3969/j.issn.1000-0550.2002.03.011

    YUAN Xuyin, CHEN Jun, JI Junfeng et al. Characteristics and environmental changes of pollution elements in Taihu sediments and soil near the lake[J]. Acta Sedimentologica Sinica, 2002, 20(3): 427-434. doi: 10.3969/j.issn.1000-0550.2002.03.011

    [38] 唐薇, 殷勇, 李书恒, 等.高邮湖GY07-02柱状样的沉积记录与湖泊环境演化[J].海洋地质与第四纪地质, 2014, 34(4): 145-151. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=f106d87d-a1f0-4c88-903f-d9c5b9ed92be

    TANG Wei, YIN Yong, LI Shuheng et al. Sedimentary characteristics of GY07-02 column and environmental changes of Gaoyou Lake[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 145-151. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=f106d87d-a1f0-4c88-903f-d9c5b9ed92be

    [39] 葛全胜, 郑景云, 郝志新, 等.过去2000年中国气候变化研究的新进展[J].地理学报, 2014, 69(9): 1248-1258. http://d.old.wanfangdata.com.cn/Periodical/dlxb201409003

    GE Qansheng, ZHENG Jingyun, HAO Zhixin et al. State-of-the-arts in the study of climate changes over China for the past 2000 years[J]. Acta Geographica Sinica, 2014, 69(9): 1248-1258. http://d.old.wanfangdata.com.cn/Periodical/dlxb201409003

    [40] 邹逸麟.东汉以后黄河下游出现长期安流局面问题的再认识[J].人民黄河, 1989, 2: 60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004498059

    ZOU Yilin. Restudy on the long period without serve flooding on Lower Yellow River during 70-870[J]. Yellow River, 1989, 2: 60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004498059

    [41] 程红, 魏明建.华北地区两千年来气候变化的初步研究[J].首都师范大学学报:自然科学版, 2004, 25: 120-123. http://www.cnki.com.cn/Article/CJFDTOTAL-SDSX2004S1030.htm

    CHENG Hong, WEI Mingjian. Elementary Research on Huabei climate varieties in the past two thousand years[J]. Journal of Capital Normal University (Natural Science Edition), 2004, 25: 120-123. http://www.cnki.com.cn/Article/CJFDTOTAL-SDSX2004S1030.htm

    [42]

    Wang Y J, Su Y J. Influence of solar activity on breaching, overflowing and course-shifting events of the Lower Yellow River in the late Holocene[J]. The Holocene, 2013, 23(5): 656-666. doi: 10.1177/0959683612467481

    [43] 王绍武.公元1380年以来我国华北气温序列的重建[J].中国科学B辑, 1990, 5: 553-560. doi: 10.3321/j.issn:1006-9240.1990.05.002

    WANG Shaowu. Reconstruction the climate sequence of North China since 1380 AD[J]. Science in China (Series B) 1990, 5: 553-560. doi: 10.3321/j.issn:1006-9240.1990.05.002

    [44] 王绍武, 王日昇[J].中国的小河冰期[J].科学通报, 1990, 10: 769-772.

    WANG Shaowu, WANG Risheng. The Little Ice Age in China[J]. Chinese Science Bulletin, 1990, 10: 769-772.

    [45] 苏桂武.华北地区500年来旱涝区域分异演变的研究[J].第四纪研究, 1999, 19(5): 430-440. doi: 10.3321/j.issn:1001-7410.1999.05.006

    SU Guiwu. Research on the dry-wet regional differentiation changes during the past 500 years of North China[J]. Quaternary Sciences, 1999, 19(5): 430-440. doi: 10.3321/j.issn:1001-7410.1999.05.006

  • 期刊类型引用(3)

    1. 彭晨昂. 南海北部陆坡X区MTDs特征及形态动力学控制因素. 中外能源. 2024(02): 39-45 . 百度学术
    2. 李玲,李磊,闫华敏,彭晨昂,程琳燕,高毅凡,张威,龚广传. 陆坡重力流沉积地貌单元三维地震表征及其成因-以琼东南盆地陵水凹陷为例. 海洋地质与第四纪地质. 2023(01): 37-48 . 本站查看
    3. 钟广法. 超临界浊流之地貌动力学和沉积特征. 沉积学报. 2023(01): 52-72 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  4019
  • HTML全文浏览量:  1136
  • PDF下载量:  63
  • 被引次数: 3
出版历程
  • 收稿日期:  2018-08-02
  • 修回日期:  2018-09-25
  • 刊出日期:  2019-06-27

目录

YI Yanan

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回