马里亚纳海槽岩浆作用研究进展

胡延斌, 来志庆, 李梦, 乔则文, 赵广涛, 韩宗珠, 国坤

胡延斌,来志庆,李梦,等. 马里亚纳海槽岩浆作用研究进展[J]. 海洋地质与第四纪地质,2023,43(5): 64-72. DOI: 10.16562/j.cnki.0256-1492.2023091601
引用本文: 胡延斌,来志庆,李梦,等. 马里亚纳海槽岩浆作用研究进展[J]. 海洋地质与第四纪地质,2023,43(5): 64-72. DOI: 10.16562/j.cnki.0256-1492.2023091601
HU Yanbin,LAI Zhiqing,LI Meng,et al. Progress of the researches on magmatism in the Mariana Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):64-72. DOI: 10.16562/j.cnki.0256-1492.2023091601
Citation: HU Yanbin,LAI Zhiqing,LI Meng,et al. Progress of the researches on magmatism in the Mariana Trough[J]. Marine Geology & Quaternary Geology,2023,43(5):64-72. DOI: 10.16562/j.cnki.0256-1492.2023091601

马里亚纳海槽岩浆作用研究进展

基金项目: 山东省自然科学基金项目“冲绳海槽岩浆差异演化过程的斑晶矿物示踪研究”(ZR2017PD002);中国科学院海洋地质与环境重点实验室开放基金课题“马尔库斯-威克海山区地幔性状及其玄武岩成因研究”(MGE2019KG05)
详细信息
    作者简介:

    胡延斌(1983—),男,高级工程师,主要从事海洋地质学研究, E-mail:gojoyo@163.com

    通讯作者:

    来志庆(1983—),男,博士,高级实验师,主要从事海洋地质学研究,E-mail:laizhiqing@ouc.edu.cn

  • 中图分类号: P736.21

Progress of the researches on magmatism in the Mariana Trough

  • 摘要: 西太平洋俯冲带是世界上最典型、最活跃的俯冲带,分布众多的海沟-岛弧-弧后盆地(沟弧盆)系统。马里亚纳俯冲带是典型的洋-洋俯冲带,而马里亚纳海槽作为马里亚纳俯冲带的重要构造单元,是研究不受陆壳物质影响的俯冲作用的理想区域。前人对马里亚纳海槽岩浆地幔源区性状、俯冲组分的影响、岩浆演化等进行了详细研究。结果表明:(1) 马里亚纳海槽岩浆源区主要为亏损地幔,岩性主要为橄榄岩,且不同区段具有不一致的地幔部分熔融程度;(2) 不同区段受到来自蚀变洋壳及沉积物的俯冲组分的影响程度也不同,并由此影响了不同区段的地幔熔融程度和初始岩浆成分;(3) 俯冲组分的影响自中段向南北两段逐渐加强,中段主要受到来自沉积物熔体的影响,南、北段受到板片释放的含水流体的影响则更为明显;(4) 不同区段甚至同一区段的岩浆在演化过程中,经历了橄榄石、辉石、斜长石等斑晶矿物的差异性分离结晶过程,这也很好地解释了该区丰富的岩石类型和玄武质岩石的不同矿物组合特征。以上研究很好地促进了对马里亚纳海槽岩浆作用过程的认识,也深化了对俯冲带构造-岩浆作用的理解。
    Abstract: The Western Pacific subduction zone is one of the most typical and active ones in the world, featuring a vast distribution of trench-island arc-back-arc basin systems. The Mariana subduction zone is a typical ocean-ocean subduction zone, and the Mariana Trough is an important component tectonic unit and an ideal area to elucidate the subduction without the influence of continental crust materials. The magmatic processes of the Mariana Trough were studied in detail, such as rock mantle source properties, subduction components, and magmatic evolution. The research clarified that: (1) the magma source in the Mariana Trough is mostly depleted mantle as it features peridotite dominance and the degree of partial melting of the source mantle varies in different regions. (2) The subduction components from altered oceanic crust and sediments in different parts are affected to different degrees of mantle melting and initial magma composition in different regions. (3) The influence of subduction components gradually increased from the middle section to the north and south sections. The middle section was mainly affected by melt from sediments, and the south and north sections were more significantly affected by hydrous fluids. (4) During the magma evolution in different regions or even in the same region, the fractional crystallization of olivine, pyroxene, and plagioclase can well explain the diverse rock types and different phenocryst assemblages in basaltic rocks. The achievements above could promote the understanding of the magmatism process in the Mariana Trough and also strengthen the deep understanding of tectonic-magmatism in the subduction zone.
  • 西太平洋俯冲带是世界上最典型、最活跃的俯冲带,分布众多的海沟-岛弧-弧后盆地(沟弧盆)系统(图1)。弧后盆地是活动大陆边缘沟-弧-盆系统的重要组成部分,是由板片俯冲作用形成的火山弧后构造伸展区域[1-3]。由于弧后盆地的张性扩张,弧后地幔减压熔融并在地表产生大量玄武质岩[4],同时由于俯冲组分的影响、壳源物质的混染和岩浆分异结晶作用,致使弧后盆地也有少量酸性岩分布[5-6]。因此,弧后盆地火山岩是揭示深部岩浆动力学和地幔动力学过程、理解和解译弧后盆地及俯冲带构造演化、壳幔物质双向循环及地壳增生的“钥匙”。

    图  1  马里亚纳海槽区域构造简图[14]
    Figure  1.  Tectonic setting of the Mariana Trough in the western Pacific[14]

    马里亚纳俯冲带是由太平洋板块向西俯冲至菲律宾海板块之下而形成的洋-洋俯冲带,发育典型的“沟-弧-盆”体系[2, 7]。马里亚纳海槽是马里亚纳俯冲带的重要构造单元,自北向南呈半月形延伸1300 km[8-9]。依据不同区域的差异构造属性和俯冲组分的影响特征等,以17.5°N和21°N为界,可将马里亚纳海槽分为北段、中段和南段,其北段现处于裂谷阶段,中、南段处于海底扩张阶段[10-12]。迄今,前人对该区域地幔性状、俯冲组分的影响、深部岩浆作用过程和岩石成因开展了诸多研究[4, 11, 13-14]。本文对以上研究进展进行了简要讨论和总结,以期能进一步提升对马里亚纳海槽构造-岩浆作用乃至弧后盆地深部岩浆动力学和地幔动力学过程的认识和理解。

    马里亚纳海槽出露大量玄武岩和安山岩(图2),少量橄榄岩、英安岩和长英质岩石[13-15] ;其北段主要有玄武岩、安山岩及少量英安岩和流纹岩等,中段主要有玄武岩、安山岩和英安岩、少量橄榄岩、极少量辉长岩和花岗岩等,南段主要有玄武岩和少量英安岩[11, 16-17]。有学者认为该区玄武岩近乎为MORB[18],但大量研究结果表明,其相比MORB,更富集LILE(K、Rb、Sr、Ba等)、LREE、H2O、Th和U,相对亏损HFSE(Ti、Zr、Nb、Hf和Ta)[4, 10]。该区玄武岩常具有气孔状构造,斑晶常有两种矿物组合类型[4, 14]:(1)橄榄石+斜长石,(2)橄榄石+单斜辉石+斜长石。玄武岩中单斜辉石和橄榄石多为小斑晶[14];斜长石大斑晶常见,偶见巨晶[9]。闪长岩中斑晶尺寸较大,角闪石为10~20 mm,斜长石为5~20 mm[15]。玄武质岩中斜长石An值多大于70,部分巨晶及大斑晶斜长石An值约为89[9],闪长岩和长英质岩中斜长石An值多小于44[15]。该区玄武质岩浆主活动期为2~4 Ma[19],也有学者认为火山岩主要形成时代为1.8±0.6 Ma[16],但玄武质岩浆活动自晚中新世以来未曾间断,玄武岩地质年龄在空间上具有从南到北逐渐变新的演化规律[19]

    图  2  马里亚纳海槽火山岩样品TAS分类图解
    火山岩数据来自Lai 等 [14]、Yan 等[20] 和Georoc数据库(http://georoc.mpch-mainz.gwdg.de/georoc/)。
    Figure  2.  Total alkalis vs. SiO2 classification of lavas in the Mariana Trough
    Data of lavas are from Lai et al [14], Yan et al[20] and Georoc database.

    大洋玄武岩的系统研究很好地促进了现代地幔地球化学的发展,因其几乎未经历大陆岩石圈的混染,因此其更易追溯岩浆源区的地幔性质[21]。而弧后盆地玄武岩(BABB)的成分虽受到地幔对流乃至俯冲组分的影响,但其主要成分仍受控于俯冲带地幔类型、物质组成和部分熔融程度[18-19, 22-23]。因此,弧后盆地玄武岩成分特征仍很大程度上反映了源区地幔特征。马里亚纳海槽火山岩Sr-Nd-Pb-Hf同位素特征表明(图3),该区地幔应属印度洋型地幔[24-25],但也可能同时包括亏损型地幔及高Sr和低Nd同位素比值的富集地幔(EM1?),由于俯冲组分的加入,地幔源区可能富集碱性元素和H2O[4, 26]。马里亚纳海槽中段的地幔在海槽扩张形成前可能位于古岛弧(西马里亚纳残留弧、帕里西维拉洋脊等)之下,在海槽打开前,超级俯冲带地幔楔的交代变质作用导致其富集大离子亲石元素[23]。在弧后盆地初期裂谷阶段,由亏损地幔部分熔融形成的弧后岩浆在上升过程中经历了上覆富集地幔的同化混染和/或“过滤”的影响[27],从而使得该岩浆具有富集地幔的部分特征。因此,有学者认为马里亚纳海槽下地幔应为DMM,岩性主要是橄榄岩,但受俯冲组分的影响,即含H2O流体/熔体的加入可能导致地幔楔发生变质作用而形成部分辉石岩型地幔等,从而导致地幔性状的改变和不均一性的形成[4, 27-30],其部分熔融后形成的玄武质岩浆经演化后形成了不同类型或成分特征的火山岩[13]

    图  3  马里亚纳海槽火山岩Sr–Nd–Pb–Hf 同位素图解[28]
    沉积物数据来自Stern 等[29],马里亚纳岛弧玄武岩数据来自Pearce 等[30],DMM数据来自Workman 和 Hart[31],火山岩、MORB、EM2型IOB、EM1型OIB,HIMU型IOB数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc)。
    Figure  3.  Sr–Nd–Pb–Hf systematics of the Mariana Trough lavas
    sediments are from Stern et al.[29];IAB from the Mariana Arc are from Pearce et al[30];DMM are from Workman and Hart[31];lavas, MORB, and IOB are from GEOROC database.

    马里亚纳海槽不同区段地幔具有差异性部分熔融程度,这也导致了火山岩在成分上的系列变化,其北段的部分熔融程度大于中段“真正”的弧后盆地[18, 28, 32]。根据玄武质玻璃的水含量(0.5%~1.6%)推算马里亚纳海槽地幔部分熔融程度介于6%~24%之间,变化范围较大[33]。玄武质岩PGE元素特征表明中段地幔熔融程度不高[34],可能仅为10%~19%,属于较低熔融程度范围[13],较低的地幔部分熔融程度也使得超基性岩的出露成为可能[33, 35]。该区俯冲洋壳的熔融深度大约为125~185 km,而地幔楔的熔融深度约为150~210 km[36]

    俯冲至菲律宾海板块之下的板片或循环洋壳对弧后盆地岩浆源区产生了明显的影响[10, 37],俯冲过程中板片发生脱水和/或部分熔融形成富含H2O和大离子亲石元素的俯冲组分(图4),其不仅影响弧后盆地的地幔部分熔融程度还直接导致其初始岩浆成分的改变[13, 18, 37-39]。马里亚纳海槽不同区段与海沟距离、构造属性及板片俯冲角度和速率的变化,致使俯冲组分的加入方式、比例也发生明显改变[40]。俯冲组分的影响自中段向南北两段逐渐增强[11, 18, 28],北、中段的加入比例分别为7%和4%[10];中段扩张中心主要受深部俯冲组分的影响,北段和南段尤其马里亚纳岛弧更多地受浅部俯冲组分的影响[11]。众所周知,俯冲组分是不同比例的蚀变洋壳和沉积物脱水和/或熔融形成的流体/熔体,因此不同来源的俯冲组分对海槽不同区段的影响具有显著的差异性。研究表明,中段主要受沉积物熔体的影响,南段受含水流体的影响更为明显[41]。加入海槽扩张中心的俯冲组分主要源自蚀变洋壳,而加入中央地堑的俯冲组分主要来自沉积物,并以高La/Sm及相对低的U/Th和Zr/Nb值为特征[42]。此外,马里亚纳海槽玄武质玻璃Sr-Nd同位素研究结果也表明,弧后岩浆在源区与岛弧性质的熔体发生混合[26]。尤其弧后盆地东缘分布着为数不少的火山链,自岛弧延伸至弧后盆地内可达70 km,其火山岩中沉积物的加入比例可高达25%以上[12]。特别是,海槽南段的玄武质岩浆源区虽为MORB型地幔,但也受到岛弧型物质成分的影响[43]。值得注意的是,弧前蛇纹岩释放的含水流体对俯冲带弧下地幔楔的改造使其具有明显的俯冲带地球化学特征[44-45],因而考虑到海槽南段的特殊位置和构造属性,此岛弧成分特征是否仅代表了俯冲流体对地幔楔的改造,而非岛弧物质成分对岩浆源区的直接影响(加入)?此外,Ribeiro 等还认为,海槽南段岩浆受到来自菲律宾海板块的软流圈外溢流的影响[46]

    图  4  马里亚纳海槽中段玄武岩稀土和微量分配图[14]
    玄武岩数据来自Lai 等[14],N-MORB、OIB与标准化值来自 Sun 和 McDough [47], IAB 数据来自 Niu 和 O’hara [48]
    Figure  4.  Chondrite normalized REE and primitive mantle normalized trace elements patterns of the basalts from the Central Mariana Trough[14]
    Data: basalt are from Lai et al[14],N-MORB, OIB and standardized data are from Sun and McDough [47], IAB are from Niu and O’hara [48].

    弧后盆地玄武岩成分不仅受到地幔成分和俯冲组分的影响,其化学成分尤其斑晶矿物类型的多样性还受控于岩浆分异结晶作用[13]。另如受控于岩浆演化过程中的分离(低压)结晶,形成诸如安山质和长英质岩石等[13, 36]。为揭示马里亚纳海槽中段岩浆演化和火山岩成因,通过向最低分离结晶程度的样品中回加橄榄石成分直至其与Fo值为89的橄榄石平衡为止,并以此计算初始岩浆成分。此方法得到的初始岩浆MgO含量为10%~13%,岩浆源区深度为30~50 km,初始岩浆的橄榄石分离结晶程度仅有0.5%[13]。此外,由于岩浆源区不同熔体的混合、H2O含量的变化以及抽离岩浆层位的差异性导致上升岩浆具有不同基性程度和上升速率,由此也导致了后续差异性岩浆演化过程[36]

    海槽深部可能存在岩浆房(储集库),其内发生了强烈的分异结晶作用[8, 49]。在此,岩浆可能主要经历了橄榄石和Cr-尖晶石的分离结晶,但也有学者认为在岩浆演化的起始阶段主要发生了橄榄石和单斜辉石等基性矿物的分离结晶[8, 49]。Hawkins 等推测,在此高压环境下单斜辉石的结晶起到了重要作用[13]。同时,在地壳浅部可能也存在小型岩浆房(储集库)[9],在此低压环境下,辉石是主要结晶矿物相[9, 13]。少量玄武岩中单斜辉石斑晶的核幔结构及其结晶压力计算结果表明,辉石在深部和浅部均经历了分离结晶过程(图5[28]。此外,岩浆中较高的H2O含量影响(抑制)了斜长石的分离结晶[20, 26]。斜长石包裹体研究结果表明,斜长石主要结晶于7 km深度的岩浆房内[50],这可能是因岩浆在深部岩浆房内的滞留时间较长(约为105 a)[51],使其在此有充裕时间生长成斜长石斑晶甚至巨晶[28]

    图  5  玄武岩单斜辉石面分析图像[28]
    a: Ca元素面分析,b: Mg元素面分析。
    Figure  5.  Images of clinopyroxene in basalt from the Mariana Trough[28]
    a:High-resolution Ca map,b: high-resolution Mg map.

    迄今,马里亚纳海槽岩浆物理化学状态的研究成果较少,有学者基于橄榄石和斜长石包裹体测温分析结果,认为斑晶结晶温度为1035~1145℃[52];矿物温压计计算结果也表明,斑晶结晶温度为1009~1300℃,结晶压力主要为约0.4 kbar和1.8~2.1 kbar[9],即部分斑晶经历了多期次分离结晶作用过程[9, 52]。另有学者认为海槽中段岩浆H2O含量为0.2%~2.8 %[50],甚至小于0.4%[18]

    本文简要总结了当前马里亚纳海槽岩浆源区地幔性状、俯冲组分影响、岩浆演化等岩浆作用过程的相关研究成果。但不难发现,仍有诸多尚待深入认识和揭示的科学问题。如:(1)马里亚纳海槽地幔可能属于印度洋型地幔,但该区地幔受俯冲作用的改造和影响后,是否发生或发生了什么程度的岩性变化,其地幔不均一性的成因机制为何;(2)不同区段加入岩浆源区的俯冲流体类型和定量甄别仍有异议;(3)对该区岩浆物理化学状态(温度、压力和H2O含量等)的研究程度较低,这也制约了对岩浆演化过程的精细约束。

    要解决以上问题,不妨进一步开展矿物熔体包裹体的测试和研究,精确解译原始岩浆组成特征和岩浆源区地幔属性[7];开展B、Ca、Fe和Ce等非传统同位素研究,利用丰富的同位素地球化学手段,深入揭示俯冲组分对岩浆作用的影响[53];在全岩地球化学研究基础上,深化斑晶矿物学(斑晶微区结构和成分等)研究,推动对岩浆物理化学状态(温度、压力和H2O含量等)特别是物理化学状态变化的定量示踪研究,精细反演不同区段的岩浆演化过程。总之,对这些问题的深入探究,将很好地促进对马里亚纳海槽岩浆作用过程的认识,深化对俯冲带构造-岩浆作用的深入理解。

    致谢:感谢曾志刚研究员邀撰本文,感谢两位评审专家提出的建设性意见和宝贵建议,特别感谢期刊编辑在本文投稿和刊出过程中给予的帮助!

  • 图  1   马里亚纳海槽区域构造简图[14]

    Figure  1.   Tectonic setting of the Mariana Trough in the western Pacific[14]

    图  2   马里亚纳海槽火山岩样品TAS分类图解

    火山岩数据来自Lai 等 [14]、Yan 等[20] 和Georoc数据库(http://georoc.mpch-mainz.gwdg.de/georoc/)。

    Figure  2.   Total alkalis vs. SiO2 classification of lavas in the Mariana Trough

    Data of lavas are from Lai et al [14], Yan et al[20] and Georoc database.

    图  3   马里亚纳海槽火山岩Sr–Nd–Pb–Hf 同位素图解[28]

    沉积物数据来自Stern 等[29],马里亚纳岛弧玄武岩数据来自Pearce 等[30],DMM数据来自Workman 和 Hart[31],火山岩、MORB、EM2型IOB、EM1型OIB,HIMU型IOB数据来自GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc)。

    Figure  3.   Sr–Nd–Pb–Hf systematics of the Mariana Trough lavas

    sediments are from Stern et al.[29];IAB from the Mariana Arc are from Pearce et al[30];DMM are from Workman and Hart[31];lavas, MORB, and IOB are from GEOROC database.

    图  4   马里亚纳海槽中段玄武岩稀土和微量分配图[14]

    玄武岩数据来自Lai 等[14],N-MORB、OIB与标准化值来自 Sun 和 McDough [47], IAB 数据来自 Niu 和 O’hara [48]

    Figure  4.   Chondrite normalized REE and primitive mantle normalized trace elements patterns of the basalts from the Central Mariana Trough[14]

    Data: basalt are from Lai et al[14],N-MORB, OIB and standardized data are from Sun and McDough [47], IAB are from Niu and O’hara [48].

    图  5   玄武岩单斜辉石面分析图像[28]

    a: Ca元素面分析,b: Mg元素面分析。

    Figure  5.   Images of clinopyroxene in basalt from the Mariana Trough[28]

    a:High-resolution Ca map,b: high-resolution Mg map.

  • [1] 曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动[J]. 海洋科学集刊, 2016(51):3-36

    ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, et al. Geological tectonics, magmatism and seafloor hydrothermal activity in the back-arc basins of the Western Pacific[J]. Studia Marina Sinica, 2016(51):3-36.

    [2] 石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7):737-750

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7):737-750.

    [3] 刘鑫, 李三忠, 赵淑娟, 等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4):329-340

    LIU Xin, LI Sanzhong, ZHAO Shujuan, et al. Structure of the Mariana subduction system[J]. Earth Science Frontiers, 2017, 24(4):329-340.

    [4]

    Tian L Y, Zhao G T, Zhao G C, et al. Geochemistry of basaltic lavas from the Mariana Trough: evidence for influence of subduction component on the generation of backarc basin magmas[J]. International Geology Review, 2005, 47(4):387-397. doi: 10.2747/0020-6814.47.4.387

    [5]

    Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497:146-161. doi: 10.1016/j.chemgeo.2018.09.002

    [6]

    Zhang Y X, Zeng Z G, Gaetani G, et al. Mineralogical constraints on the magma mixing beneath the Iheya Graben, an active back-arc spreading Centre of the Okinawa trough[J]. Journal of Petrology, 2020, 61(9):egaa098.

    [7] 李晓辉, 杨慧心, 曾志刚. 西太平洋弧后盆地火山岩中熔体包裹体研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1):166-179

    LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1):166-179.

    [8]

    Fryer P. Geology of the Mariana trough[M]//Taylor B. Backarc Basins: Tectonics and Magmatism. New York: Springer, 1995: 237-279.

    [9]

    Lai Z Q, Zhao G T, Han Z Z, et al. The magma plumbing system in the Mariana Trough back-arc basin at 18° N[J]. Journal of Marine Systems, 2018, 180:132-139. doi: 10.1016/j.jmarsys.2016.11.008

    [10]

    Zhao G T, Luo W Q, Lai Z Q, et al. Influence of subduction components on magma composition in back‐arc basins: a comparison between the Mariana and Okinawa troughs[J]. Geological Journal, 2016, 51(S1):357-367. doi: 10.1002/gj.2820

    [11]

    Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc–basin system: implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7):Q07006.

    [12]

    Anderson M O, Chadwick W W Jr, Hannington M D, et al. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6):2240-2274. doi: 10.1002/2017GC006813

    [13]

    Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of the axial ridge of the Mariana Trough backarc spreading center[J]. Earth and Planetary Science Letters, 1990, 100(1-3):226-250. doi: 10.1016/0012-821X(90)90187-3

    [14]

    Lai Z Q, Gao W, Han Z Z, et al. Mineralogical and geochemical constraints on the mantle source characteristics of basaltic lavas from the central Mariana Trough[J]. Journal of Ocean University of China, 2023, 22(5):1313-1325. doi: 10.1007/s11802-023-5449-0

    [15]

    Martínez F, Fryer P, Baker N A, et al. Evolution of backarc rifting: Mariana Trough, 20°-24°N[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B3):3807-3827. doi: 10.1029/94JB02466

    [16]

    Stern R J, Bloomer S H, Martinez F, et al. The composition of back-arc basin lower crust and upper mantle in the Mariana Trough: a first report[J]. Island Arc, 1996, 5(3):354-372. doi: 10.1111/j.1440-1738.1996.tb00036.x

    [17]

    Michibayashi K, Ohara Y, Stern R J, et al. Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: results of a Shinkai 6500 dive[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(5):Q05X06. doi: 10.1029/2008GC002197

    [18]

    Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60(12):2153-2166. doi: 10.1016/0016-7037(96)00078-6

    [19] 高永军, 穆治国, 吴世迎. 马里亚纳海槽玄武岩K-Ar地质年代学及地球化学研究[J]. 海洋地质与第四纪地质, 2000, 20(3):53-59

    GAO Yongjun, MU Zhiguo, WU Shiying. Studies on K-Ar geochronology and geochemistry of Mariana Trough basalts[J]. Marine Geology & Quaternary Geology, 2000, 20(3):53-59.

    [20]

    Yan Q S, Zhang P Y, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes[J]. Mineralogy and Petrology, 2019, 113(6):803-820. doi: 10.1007/s00710-019-00683-x

    [21] 张国良, 罗青, 陈立辉. 大洋地幔化学组成不均一性成因研究回顾及展望[J]. 海洋地质与第四纪地质, 2017, 37(1):1-13

    ZHANG Guoliang, LUO Qing, CHEN Lihui. Geochemical heterogeneity of oceanic mantle: a review[J]. Marine Geology & Quaternary Geology, 2017, 37(1):1-13.

    [22]

    Rubin K H, Sinton J M, Maclennan J, et al. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes[J]. Nature Geoscience, 2009, 2(5):321-328. doi: 10.1038/ngeo504

    [23]

    Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives[M]//Christie D M, Fisher C R, Lee S M, et al. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington: American Geophysical Union, 2006: 63-86.

    [24]

    Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: evidence for heterogeneity and a recycled component in backarc basin mantle[J]. Earth and Planetary Science Letters, 1990, 100(1-3):251-264. doi: 10.1016/0012-821X(90)90188-4

    [25]

    Woodhead J, Stern R J, Pearce J, et al. Hf-Nd isotope variation in Mariana Trough basalts: the importance of “ambient mantle” in the interpretation of subduction zone magmas[J]. Geology, 2012, 40(6):539-542. doi: 10.1130/G32963.1

    [26]

    Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough basalts (MTB): trace element and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-like melts[J]. Earth and Planetary Science Letters, 1987, 82(3-4):241-254. doi: 10.1016/0012-821X(87)90199-3

    [27]

    Hawkins J W, Melchior J T. Petrology of Mariana Trough and Lau basin basalts[J]. Journal of Geophysical Research, 1985, 90(B13):11431-11468. doi: 10.1029/JB090iB13p11431

    [28] 来志庆. 马里亚纳海槽中段深部岩浆作用过程研究[D]. 中国海洋大学博士学位论文, 2019

    LAI Zhiqing. Magma formation and evolution in the Middle Mariana Trough[D]. Doctor Dissertation of Ocean University of China, 2019.

    [29]

    Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[M]//Eiler J. Inside the Subduction Factory. Washington: American Geophysical Union, 2004: 175-222.

    [30]

    Pearce J A, Kempton P D, Nowell G M, et al. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems[J]. Journal of Petrology, 1999, 40(11):1579-1611. doi: 10.1093/petroj/40.11.1579

    [31]

    Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1-2):53-72. doi: 10.1016/j.jpgl.2004.12.005

    [32]

    Gribble R F, Stern R J, Newman S, et al. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magmagenesis in back-arc basins[J]. Journal of Petrology, 1998, 39(1):125-154. doi: 10.1093/petroj/39.1.125

    [33]

    Kelley K A, Plank T, Grove T L, et al. Mantle melting as a function of water content beneath back-arc basins[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9):B09208.

    [34] 曹志敏, 安伟, 周美夫, 等. 马里亚纳海槽扩张轴(中心)玄武岩铂族元素特征[J]. 海洋学报, 2006, 28(5):69-75

    CAO Zhimin, AN Wei, ZHOU Meifu, et al. Characteristics of platinum-group elements in Mariana Trough basalts[J]. Acta Oceanologica Sinica, 2006, 28(5):69-75.

    [35]

    Ohara Y, Stern R J, Ishii T, et al. Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin[J]. Contributions to Mineralogy and Petrology, 2002, 143(1):1-18. doi: 10.1007/s00410-001-0329-2

    [36]

    Sinton J M, Fryer P. Mariana Trough lavas from 18°N: implications for the origin of back arc basin basalts[J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B12):12782-12802. doi: 10.1029/JB092iB12p12782

    [37]

    Li X H, Yan Q S, Zeng Z G, et al. Across-arc variations in Mo isotopes and implications for subducted oceanic crust in the source of back-arc basin volcanic rocks[J]. Geology, 2021, 49(10):1165-1170. doi: 10.1130/G48754.1

    [38]

    Wiens D A, Kelley K A, Plank T. Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry[J]. Earth and Planetary Science Letters, 2006, 248(1-2):30-42. doi: 10.1016/j.jpgl.2006.04.011

    [39]

    Matsuno T, Seama N, Shindo H P, et al. Enhanced and asymmetric melting beneath the southern Mariana back-arc spreading center under the influence of Pacific plate subduction[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(3):e2021JB022374. doi: 10.1029/2021JB022374

    [40]

    Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4):3-1-3-13.

    [41]

    Yan Q S, Meng X W, Shi X F. Geochemical and Sr-Nd-Hf-Pb isotopic constraints the petrogenesis and origin of basalts from the southern Okinawa Trough[J]. Acta Geologica Sinica:English Edition, 2019, 93(S2):116-119. doi: 10.1111/1755-6724.14216

    [42]

    Ikeda Y, Nagao K, Ishii T, et al. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc–Trough system: evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics[J]. Island Arc, 2016, 25(4):253-273. doi: 10.1111/iar.12150

    [43]

    Masuda H, Fryer P. Geochemical characteristics of active backarc basin volcanism at the southern end of the Mariana Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 261-273.

    [44]

    Chen Z X, Chen J B, Zeng Z G, et al. Zinc isotopes of the Mariana and Ryukyu arc-related lavas reveal recycling of forearc serpentinites into the subarc mantle[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(11):e2021JB022261. doi: 10.1029/2021JB022261

    [45] 徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学: 地球科学, 2020, 50(12): 1818-1844

    XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020, 63(12): 1969-1991.

    [46]

    Ribeiro J M, Stern R J, Martinez F, et al. Asthenospheric outflow from the shrinking Philippine Sea Plate: evidence from Hf–Nd isotopes of southern Mariana lavas[J]. Earth and Planetary Science Letters, 2017, 478:258-271. doi: 10.1016/j.jpgl.2017.08.022

    [47]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [48]

    Niu Y L, O'Hara M J, Pearce J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective[J]. Journal of Petrology, 2003, 44(5):851-866. doi: 10.1093/petrology/44.5.851

    [49] 张平阳, 鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展, 2017, 35(2):234-248

    ZHANG Pingyang, YAN Quanshu. Compositions of plagioclase hosted by basaltic rocks from the Mariana Trough and their petrogenesis significances[J]. Advances in Marine Science, 2017, 35(2):234-248.

    [50]

    Newman S, Stolper E, Stern R. H2O and CO2 in magmas from the Mariana arc and back arc systems[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(1):1013.

    [51]

    Newman S, Macdougall J D, Finkel R C. 230Th-238U disequilibrium in island arcs: evidence from the Aleutians and the Marianas[J]. Nature, 1984, 308(5956):268-270. doi: 10.1038/308268a0

    [52] 孙海青, 高爱国, 倪培, 等. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展, 2004, 22(3):292-298

    SUN Haiqing, GAO Aiguo, NI Pei, et al. A preliminary study on melt inclusions in basalts from the Mariana Trough[J]. Advances in Marine Science, 2004, 22(3):292-298.

    [53]

    Chen Z X, Chen J B, Tamehe L S, et al. Light Fe isotopes in arc magmas from cold subduction zones: implications for serpentinite-derived fluids oxidized the sub-arc mantle[J]. Geochimica et Cosmochimica Acta, 2023, 342:1-14. doi: 10.1016/j.gca.2022.12.005

  • 期刊类型引用(4)

    1. 李振春,赵贤阳,张春燕,张凯,徐夷鹏,孟繁琨. 基于修正型FR共轭梯度法的时间域粘声多参数全波形反演研究. 石油物探. 2025(02): 247-256 . 百度学术
    2. 刘鸿,徐华宁,刘欣欣,陈江欣,张菲菲,王小杰,颜中辉,杨佳佳,杨睿. 海洋地球物理数据处理现状及展望. 海洋地质与第四纪地质. 2024(03): 40-52 . 本站查看
    3. 刘欣欣,王小杰,徐华宁,杨睿,刘鸿,陈江欣. 天然气水合物地层剪切模量参数岩石物理计算及叠前反演. 海洋地质与第四纪地质. 2024(06): 60-70 . 本站查看
    4. 陈子龙,王海燕,郭华,王光文,赵玉莲. 地震全波形反演研究进展与应用现状综述. 物探与化探. 2023(03): 628-637 . 百度学术

    其他类型引用(0)

图(5)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  30
  • PDF下载量:  28
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2023-10-08
  • 录用日期:  2023-10-08
  • 网络出版日期:  2023-10-29
  • 刊出日期:  2023-10-27

目录

/

返回文章
返回