东海陆架海水和沉积物中藻类生物标志物的分布特征与比较

王婷男, 贺娟, 贾佳源, 贾国东, 陈岭娣, 李丽

王婷男,贺娟,贾佳源,等. 东海陆架海水和沉积物中藻类生物标志物的分布特征与比较[J]. 海洋地质与第四纪地质,2023,43(6): 86-102. DOI: 10.16562/j.cnki.0256-1492.2023040601
引用本文: 王婷男,贺娟,贾佳源,等. 东海陆架海水和沉积物中藻类生物标志物的分布特征与比较[J]. 海洋地质与第四纪地质,2023,43(6): 86-102. DOI: 10.16562/j.cnki.0256-1492.2023040601
WANG Tingnan,HE Juan,JIA Jiayuan,et al. Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf[J]. Marine Geology & Quaternary Geology,2023,43(6):86-102. DOI: 10.16562/j.cnki.0256-1492.2023040601
Citation: WANG Tingnan,HE Juan,JIA Jiayuan,et al. Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf[J]. Marine Geology & Quaternary Geology,2023,43(6):86-102. DOI: 10.16562/j.cnki.0256-1492.2023040601

东海陆架海水和沉积物中藻类生物标志物的分布特征与比较

基金项目: 国家自然科学基金面上项目“长江口外藻类生物标志化合物氢同位素与海洋盐度关系的研究”(41776049),“南海北部叶绿素氮同位素研究及古海洋学意义”(42276069);国家自然科学基金重点项目“南海浮游生态系统对上新世暖期气候的响应及其机制研究”(42030504)
详细信息
    作者简介:

    王婷男(1999—),女,硕士研究生,主要从事有机地球化学研究,E-mail:2131612@tongji.edu.cn

    通讯作者:

    贺娟(1980—),女,副教授,主要从事有机地球化学研究,E-mail:hj08@tongji.edu.cn

  • 中图分类号: P736

Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf

  • 摘要:

    对东海内陆架杭州湾附近的季节性水体悬浮颗粒物和表层沉积物中的主要藻类生物标志物进行分析,如菜籽甾醇、甲藻甾醇和长链烯酮,分别对应于硅藻、甲藻和定鞭藻,分析探讨水体颗粒物和沉积物中藻类生物标志物的分布特征及控制因素。研究结果显示,东海内陆架表层沉积物中藻类生物标志物空间分布特征明显,由杭州湾近岸向海,含量随水深增加而增加;颗粒物中生物标志物含量的季节变化突出,夏季样品的含量最高。生物标志物的时空变化主要受控于藻类生产力的变化。由于营养盐丰富,高初级生产力主要分布在远离河口的冲淡水和外海海流交汇的水域;夏季由于长江冲淡水携带营养盐影响扩大,近岸浮游植物生产力最高。此外,结果还显示表层沉积物与颗粒物中优势甾醇有显著差异,颗粒物中菜籽甾醇占优势,而表层沉积物中甲藻甾醇占比更大。除了通常解释的颗粒物中有机质主要反映局部地点的瞬时性,而表层沉积物中有机质反映更广区域的多年平均性,我们认为沉积物中可能发生的菜籽甾醇后期氢化作用改造有巨大影响,导致沉积物中菜籽甾醇含量相对甲藻甾醇大量降低。本研究结果强调沉积物中生物标志物沉积历史的复杂性,理解表层沉积物中生物标志物的相对变化对于沉积记录中生物标志物的准确解读具有重要意义。

    Abstract:

    Major algal biomarkers brassicasterol, dinosterol, and long-chain alkenones, representing diatoms, dinoflagellates, and haptophytes, respectively, were analyzed in seasonal suspended particles and surface sediments near Hangzhou Bay in the inland shelf of the East China Sea. The distribution characteristics and controlling factors of algal biomarkers in particles and sediments were studied. Results show that the spatial distribution characteristics of algal biomarkers in the surface sediments of the East China Sea inland shelf are obvious, and the abundances of algal biomarkers increase with the increase of water depth. The seasonal variation of algal biomarkers in particles is prominent, and the highest abundance in summer samples. Consistent with the results of previous studies, the temporal and spatial changes of biomarkers are mainly controlled by the changes of algae productivity. Due to the abundance of nutrients, high primary productivity is mainly distributed in the waters where the dilute water away from estuaries meets offshore currents. In summer, the coastal phytoplankton productivity is the highest due to the increased influence of nutrients carried by the diluted water of the Yangtze River. In addition, our results show a significant difference between the dominant sterols in surface sediments and particles. Brassicasterols dominate in particles, while dinosterols dominate in surface sediments. In addition to the common knowledge that the organic matter in particles mainly reflects the transient nature of local sites and in the surface sediment reflects the multi-year average of a wider area, we believed that the possible late hydrogenation of brassicasterol in sediments has a significant effect, leading to a significant decrease in brassicasterol abundances relative to dinosterol in the sediments. This study emphasized the complexity of sedimentary history of biomarkers in sediments. It is important to understand the relative changes of biomarkers in surface sediments for accurate interpretation of biomarkers in sedimentary records.

  • 图  1   研究区域(a)和取样站位图(b)

    黑点为取样站位,棕色轮廓区域为报道的长江口外缺氧区(据Zhang等[40])。实心蓝色箭头指示区域海流,包括黄海沿岸流(the Yellow Sea Coastal Current, YSCC)、长江冲淡水(Changjiang Diluted Water, CDW)、浙闽沿岸流(Zhe-Min Coastal Current, ZFCC)、黑潮(Kuroshio Current, KC)、台湾暖流(Taiwan Warm Current, TWC)和近岸黑潮支流(Nearshore Kuroshio Branch Current, NKBC)。

    Figure  1.   Study area (a) and sampling station (b)

    The black spots are sampling stations, and the brown line confines the reported bottom hypoxia area near the Changjiang River estuary (according to Zhang et al [40]). Solid blue arrows indicate regional currents, including: the Yellow Sea Coastal Current (YSCC), Changjiang Diluted Water (CDW), Zhe-Min Coastal Current (ZFCC), Kuroshio Current (KC), Taiwan Warm Current (TWC), and the Nearshore Kuroshio Branch Current (NKBC).

    图  2   样品中甾醇(a)和烯酮(b)的色谱图

    Figure  2.   Chromatogram of sterols (a) and alkenones (b) in the samples

    图  3   表层沉积物中生物标志物的平面分布

    分别为2019年3月、7月和10月,2020年7月和10月5个时间的4种生物标志物含量。A-E:菜籽甾醇,F-J:甲藻甾醇,K-O:烯酮,P-T:胆甾醇。

    Figure  3.   Distribution of biomarkers in the surface sediments

    Abundances of four biomarkers in March, July, and October in 2019, and July and October in 2020, separately. A-E:brassicasterol, F-J:dinosterol, K-O: alkenone, and P-T:cholesterol.

    图  4   表层颗粒物中生物标志物的平面分布

    分别为2019年3月、7月和10月,2020年7月和10月5个时间的3种生物标志物含量。A-E:菜籽甾醇,F-J:甲藻甾醇,K-O:胆甾醇。

    Figure  4.   Distribution of biomarkers in surface particles

    Abundances of three biomarkers in March, July and October in 2019, and July and October in 2020, separately. A-E: brassicasterol, F-J: dinosterol, and K-O: cholesterol.

    图  5   表层沉积物和悬浮颗粒物中菜籽甾醇和甲藻甾醇的含量

    Figure  5.   Abundances of brassicasterol and dinosterol in surface sediments and suspended particles

    图  6   表层沉积物和悬浮颗粒物中菜籽甾醇和菜籽甾烷醇的含量

    Figure  6.   Abundances of brassicasterol and brassicastanol in surface sediments and suspended particles

    图  7   海水和沉积物中甾醇及甾烷醇的变化示意图

    根据Nishimura和Koyama[70]改绘。

    Figure  7.   Diagrammatic representation of the changes of stenols and stanols in seawater and sediment

    Modified from Nishimura and Koyama [70].

    表  1   采样站位信息

    Table  1   Information of the sampling stations

    断面 时间 3月 7月 10月
    站位 经纬度 水深/m 经纬度 水深/m 经纬度 水深/m
    2019 A9 A9-1 30°00.039'N、122°29.632'E 23 30°00.863'N、122°19.320'E 19 29°59.941'N、122°29.959'E 21
    A9-2 29°58.988'N、122°34.376'E 27 29°58.652'N、122°34.180'E 24 29°58.813'N、122°34.169'E 27
    A9-3 29°57.339'N、122°38.746'E 34 29°57.436'N、122°37.838'E 30 29°57.418'N、122°38.852'E 35
    A9-4 29°54.600'N、122°47.032'E 43 29°54.711'N、122°46.441'E 42 29°54.607'N、122°47.570'E 43
    A9-5 29°51.876'N、122°55.945'E 52 29°21.510'N、122°38.149'E 52 29°52.450'N、122°55.699'E 53
    A11 A11-1 29°31.197'N、122°23.903'E 21 29°38.651'N、122°24.338'E 20 29°30.644'N、122°24.402'E 22
    A11-2 29°28.644'N、122°29.658'E 31 29°28.527'N、122°29.774'E 31 29°28.603'N、122°29.576'E 30
    A11-3 29°25.042'N、122°33.742'E 43 29°24.792'N、122°33.791'E 42 29°25.010'N、122°33.792'E 41
    A11-4 29°21.510'N、122°38.149'E 49 29°21.458'N、122°38.093'E 50 29°21.614'N、122°37.628'E 46
    A12 A12-1 29°16.393'N、122°19.320'E 16 29°16.367'N、122°20.070'E 20 29°16.088'N、122°20.302'E 19
    A12-2 29°13.817'N、122°24.249'E 28 29°28.644'N、122°29.658'E 29 29°13.772'N、122°24.599'E 29
    A12-3 29°10.717'N、122°28.987'E 41 29°10.563'N、122°29.100'E 42 29°10.744'N、122°29.240'E 41
    A12-4 29°05.060'N、122°33.270'E 50 29°05.174'N、122°32.810'E 49 29°05.136'N、122°32.887'E 50
    A13 A13-1 29°04.268'N、122°15.399'E 24 29°04.823'N、122°16.119'E 22 29°04.746'N、122°15.036'E 23
    A13-2 29°03.758'N、122°20.100'E 32 29°03.238'N、122°21.191'E 32 29°03.584'N、122°21.192'E 33
    A13-3 29°00.193'N、122°25.169'E 42 29°00.254'N、122°25.440'E 43 29°01.223'N、122°24.913'E 42
    A13-4 28°59.351'N、122°29.906'E 49 28°59.661'N、122°30.100'E 50 28°59.497'N、122°29.689'E 50
    2020 A9 A9-1 30°00.079'N、122°30.342'E 19.3 30°00.32'N、122°29.66'E 20
    A9-2 29°58.482'N、122°33.619'E 24.4 29°58.75'N、122°33.55'E 24
    A9-3 29°57.564'N、122°38.048'E 32.2 29°57.53'N、122°37.85'E 37
    A9-4 29°54.795'N、122°46.660'E 43.3 29°54.59'N、122°46.24'E 42
    A9-5 29°51.900'N、122°53.992'E 52.4 29°51.66'N、122°55.70'E 52
    A11 A11-1 29°29.474'N、122°23.860'E 17.5 29°31.19'N、122°24.26'E 21
    A11-2 29°27.339'N、122°29.468'E 28.5 29°28.93'N、122°29.19'E 29
    A11-3 29°25.140'N、122°33.531'E 39.2 29°25.07'N、122°33.50'E 41
    A11-4 29°24.109'N、122°38.866'E 48.1 29°22.88'N、122°38.59'E 49
    A12 A12-1 29°16.710'N、122°19.897'E 17.1 29°16.79'N、122°20.05'E 21
    A12-2 29°14.123'N、122°23.968'E 26.4 29°13.53'N、122°24.35'E 30
    A12-3 29°10.760'N、122°29.152'E 40.0 29°10.67'N、122°28.21'E 41
    A12-4 29°05.210'N、122°32.744'E 49.4 29°04.92'N、122°34.34'E 50
    A13 A13-1 29°04.731'N、122°15.401'E 23.9 29°04.71'N、122°16.05'E 23
    A13-2 29°03.600'N、122°20.770'E 33.2 29°03.35'N、122°21.22'E 32
    A13-3 29°00.604'N、122°24.737'E 41.7 29°01.13'N、122°25.21'E 41
    A13-4 29°00.850'N、122°29.793'E 48.6 28°59.82'N、122°30.33'E 49
    下载: 导出CSV

    表  2   表层沉积物和悬浮颗粒物中不同季节主要生物标志化合物的含量变化范围及平均值

    Table  2   Range and average abundances of biomarkers in surface sediments and suspended particles of different seasons

    时间 表层沉积物/(ng/g) 悬浮颗粒物/(ng/L)
    菜籽甾醇 甲藻甾醇 烯酮 胆甾醇 菜籽甾醇 甲藻甾醇 烯酮 胆甾醇
    2019-03范围124.5~854.0163.0~1378.40~60.9297.6~1244.40.7~34.20.2~2.5ND2.4~95.8
    均值429.1707.722.2580.811.80.924.4
    2019-07范围155.8~873.8240.0~1653.50~82.8286.9~1448.325.5~271.43.7~84.9ND35.1~334.5
    均值574.7827.813.0942.1133.840.8155.6
    2019-10范围142.8~623.2138.0~914.25.6~34.1178.1~816.313.8~103.11.8~30.8ND24.7~167.1
    均值278.3322.414.1362.647.18.664.3
    2020-07范围252.9~1007.7324.7~2290.70~23.2374.3~1508.273.5~557.03.4~18.5ND45.2~623.5
    均值487.61016.212.7819.4247.09.6180.9
    2020-10范围55.3~803.1179.8~1805.610.3~32.2116.1~1263.578.7~510.43.8~13.2ND52.7~703.4
    均值420.3980.318.7703.5228.27.1179.6
    注:ND为低于检测限。
    下载: 导出CSV

    表  3   表层沉积物和颗粒物中生物标志物的相对含量和比值

    Table  3   Percentages and ratios of biomarker abundances in surface sediments and particles

    时间 表层沉积物 悬浮颗粒物
    菜籽甾醇/% 甲藻甾醇/% 烯酮/% 菜籽甾醇/甲藻甾醇 菜籽甾醇/% 甲藻甾醇/% 菜籽甾醇/甲藻甾醇
    2019-03 范围 29.6~43.3 55.5~67.1 0~3.5 0.44~0.76 39.2~97.3 2.7~60.8 0.65~36.35
    均值 37.1 61.2 1.7 0.61 80.6 19.4 11.93
    2019-07 范围 34.6~48.2 51.8~65.4 0~4.5 0.53~0.93 59.8~93.0 7.0~40.2 1.49~13.38
    均值 40.9 58.3 0.8 0.71 76.7 23.3 4.02
    2019-10 范围 39.4~51.2 47.0~58.2 1.5~3.6 0.68~1.09 71.4~91.3 8.7~28.6 2.50~10.44
    均值 46.3 51.5 2.2 0.91 84.8 15.2 6.46
    2020-07 范围 24.1~50.5 48.3~75.2 0~2.8 0.32~1.05 92.2~98.7 1.3~7.8 11.83~75.92
    均值 34.5 64.4 1.0 0.56 95.6 4.4 27.73
    2020-10 范围 21.9~38.5 59.6~74.5 0.5~6.8 0.30~0.65 93.2~98.8 1.2~6.8 13.60~79.88
    均值 29.0 69.0 2.0 0.43 96.4 3.6 34.64
    相对百分含量:菜籽甾醇%=菜籽甾醇/(菜籽甾醇+甲藻甾醇+烯酮),甲藻甾醇%=甲藻甾醇/(菜籽甾醇+甲藻甾醇+烯酮),烯酮%=烯酮/(菜籽甾醇+甲藻甾醇+烯酮)。
    下载: 导出CSV

    表  4   表层沉积物与颗粒物中主要的甾烷醇、甾醇含量及它们的比值变化

    Table  4   Ranges and average of stanol and stenol, and their ratios in surface sediments and particles

    时间 颗粒物 沉积物
    菜籽甾烷醇/
    (ng/L)
    胆甾烷醇/
    (ng/L)
    菜籽甾烷醇/
    菜籽甾醇
    胆甾烷醇/
    胆甾醇
    菜籽甾烷醇/
    (ng/g)
    胆甾烷醇/
    (ng/g)
    菜籽甾烷醇/
    菜籽甾醇
    胆甾烷醇/
    胆甾醇
    2019-03 范围 0.8~4.7 1.3~8.2 0~0.20 0.07~0.53 77.5~509.5 110.2~771.6 0.42~0.70 0.37~0.72
    均值 2.0 3.5 0.05 0.22 257.9 358.4 0.60 0.61
    2019-07 范围 3.2~26.2 9.7~91.8 0~0.29 0.16~0.56 119.6~454.3 210.4~772.9 0.36~0.77 0.39~0.73
    均值 15.4 46.5 0.11 0.31 279.2 481.8 0.49 0.52
    2019-10 范围 1.9~10.2 2.8~16.4 0.05~0.16 0.07~0.17 80.6~365.5 118.1~543.8 0.51~0.76 0.54~0.80
    均值 3.6 6.5 0.08 0.10 168.6 233.6 0.60 0.65
    2020-07 范围 1.9~13.9 5.4~20.7 0.02~0.06 0.03~0.18 101.2~445.1 NS 0.28~0.60
    均值 6.5 10.6 0.03 0.08 201.6 NS 0.41
    2020-10 范围 1.3~17.8 2.1~38.9 0.01~0.08 0.01~0.23 34.2~391.9 NS 0.39~0.70
    均值 6.4 10.9 0.03 0.08 216.6 NS 0.53
    注:NS为未分离,其中2020年表层沉积物样品的图谱中胆甾烷醇与C28直链醇未分离。
    下载: 导出CSV
  • [1]

    Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281(5374): 200-206. doi: 10.1126/science.281.5374.200

    [2]

    Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins in the global carbon cycle[J]. Geophysical Research Letters, 2005, 32(1): L01602.

    [3]

    Dai M H, Su J Z, Zhao Y Y, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50(1): 593-626. doi: 10.1146/annurev-earth-032320-090746

    [4]

    Guo S J, Feng Y Y, Wang L, et al. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea[J]. Marine Ecology Progress Series, 2014, 516: 103-126. doi: 10.3354/meps10952

    [5]

    Liu X, Xiao W P, Landry M R, et al. Responses of phytoplankton communities to environmental variability in the East China Sea[J]. Ecosystems, 2016, 19(5): 832-849. doi: 10.1007/s10021-016-9970-5

    [6]

    Fang F T, Zhu Z Y, Ge J Z, et al. Reconstruction of the main phytoplankton population off the Changjiang Estuary in the East China Sea and its assemblage shift in recent decades: from observations to simulation[J]. Marine Pollution Bulletin, 2022, 178: 113638. doi: 10.1016/j.marpolbul.2022.113638

    [7]

    Furuya K, Hayashi M, Yabushita Y, et al. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 367-387. doi: 10.1016/S0967-0645(02)00460-5

    [8]

    Gong G C, Wen Y H, Wang B W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6-7): 1219-1236. doi: 10.1016/S0967-0645(03)00019-5

    [9]

    Zhu Z Y, Ng W M, Liu S M, et al. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area[J]. Estuarine, Coastal and Shelf Science, 2009, 84(3): 393-401. doi: 10.1016/j.ecss.2009.07.005

    [10]

    Yamaguchi H, Kim H C, Son Y B, et al. Seasonal and summer interannual variations of SeaWiFS chlorophyll a in the Yellow Sea and East China Sea[J]. Progress in Oceanography, 2012, 105: 22-29. doi: 10.1016/j.pocean.2012.04.004

    [11]

    Zhou W H, Yin K D, Long A M, et al. Spatial-temporal variability of total and size-fractionated phytoplankton biomass in the Yangtze River Estuary and adjacent East China Sea coastal waters, China[J]. Aquatic Ecosystem Health & Management, 2012, 15(2): 200-209.

    [12]

    Chen J, Liu J L. The spatial and temporal changes of chlorophyll-a and suspended matter in the eastern coastal zones of China during 1997–2013[J]. Continental Shelf Research, 2015, 95: 89-98. doi: 10.1016/j.csr.2015.01.004

    [13]

    Zhang H L, Qiu Z F, Sun D Y, et al. Seasonal and interannual variability of satellite-derived chlorophyll-a (2000–2012) in the Bohai Sea, China[J]. Remote Sensing, 2017, 9(6): 582. doi: 10.3390/rs9060582

    [14]

    Liu K K, Chao S Y, Lee H J, et al. Seasonal variation of primary productivity in the East China Sea: a numerical study based on coupled physical-biogeochemical model[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19-20): 1762-1782. doi: 10.1016/j.dsr2.2010.04.003

    [15]

    Wu P, Bi R, Duan S S, et al. Spatiotemporal variations of phytoplankton in the East China Sea and the Yellow Sea revealed by lipid biomarkers[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(1): 109-125. doi: 10.1002/2015JG003167

    [16]

    Furuya K, Kurita K, Odate T. Distribution of phytoplankton in the East China Sea in the winter of 1993[J]. Journal of Oceanography, 1996, 52(3): 323-333. doi: 10.1007/BF02235927

    [17] 赖俊翔, 俞志明, 宋秀贤, 等. 长江口及邻近海域浮游植物色素分布与群落结构特征[J]. 环境科学, 2013, 34(9): 3405-3415 doi: 10.13227/j.hjkx.2013.09.021

    LAI Junxiang, YU Zhiming, SONG Xiuxian, et al. Phytoplankton pigment patterns and community structure in the Yangtze Estuary and its adjacent areas[J]. Environmental Science, 2013, 34(9): 3405-3415. doi: 10.13227/j.hjkx.2013.09.021

    [18]

    Luan Q S, Sun J, Shen Z L, et al. Phytoplankton assemblage of Yangtze River Estuary and the adjacent east China sea in summer, 2004[J]. Journal of Ocean University of China, 2006, 5(2): 123-131. doi: 10.1007/BF02919210

    [19] 王丹, 孙军, 周锋, 等. 2006年6月长江口低氧区及邻近水域浮游植物[J]. 海洋与湖沼, 2008, 39(6): 619-627 doi: 10.3321/j.issn:0029-814X.2008.06.012

    WANG Dan, SUN Jun, ZHOU Feng, et al. Phytoplankton of Changjiang (Yangtze River) estuary hypoxia area and the adjacent East China Sea in June 2006[J]. Oceanologia et Limnologia Sinica, 2008, 39(6): 619-627. doi: 10.3321/j.issn:0029-814X.2008.06.012

    [20]

    Jiang Z B, Chen J F, Zhou F, et al. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf[J]. Continental Shelf Research, 2015, 101: 71-84. doi: 10.1016/j.csr.2015.04.009

    [21]

    Zhou Z X, Yu R C, Sun C J, et al. Impacts of Changjiang River discharge and kuroshio intrusion on the diatom and dinoflagellate blooms in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5244-5257. doi: 10.1029/2019JC015158

    [22]

    Kong C E, Yoo S, Jang C J. East China Sea ecosystem under multiple stressors: heterogeneous responses in the sea surface chlorophyll-a[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 151: 103078. doi: 10.1016/j.dsr.2019.103078

    [23]

    Lin Y C, Chung C C, Gong G C, et al. Diversity and abundance of haptophytes in the East China Sea[J]. Aquatic Microbial Ecology, 2014, 72(3): 227-240. doi: 10.3354/ame01697

    [24]

    Ye Q, Wu Y, Zhu Z Y, et al. Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the East China Sea[J]. Microbiologyopen, 2016, 5(2): 323-339. doi: 10.1002/mbo3.330

    [25]

    Wu D M, Dai Q P, Liu X Z, et al. Comparison of bacterial community structure and potential functions in hypoxic and non-hypoxic zones of the Changjiang Estuary[J]. PLoS One, 2019, 14(6): e0217431. doi: 10.1371/journal.pone.0217431

    [26]

    Xu L J, Yang D Z, Greenwood J, et al. Riverine and oceanic nutrients govern different algal bloom domain near the Changjiang estuary in summer[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(10): e2020JG005727.

    [27]

    Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1-2): 1-16. doi: 10.1016/j.jpgl.2008.07.012

    [28]

    Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21-22): 2851-2891. doi: 10.1016/j.quascirev.2011.07.009

    [29]

    Jeng W L, Huh C A. Lipids in suspended matter and sediments from the East China Sea Shelf[J]. Organic Geochemistry, 2004, 35(5): 647-660. doi: 10.1016/j.orggeochem.2003.12.002

    [30] 张海龙, 邢磊, 赵美训, 等. 东海和黄海表层沉积物生物标志物的分布特征及古生态重建潜力[J]. 中国海洋大学学报, 2008, 38(6): 992-996

    ZHANG Hailong, XING Lei, ZHAO Meixun, et al. Distribution of biomarkers in surface sediments of the East China and Yellow Seas and its potential for paleoecology reconstruction[J]. Periodical of Ocean University of China, 2008, 38(6): 992-996.

    [31]

    Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1106-1115. doi: 10.1016/j.csr.2011.04.003

    [32] 姜一晴, 邢磊, 张彭辉, 等. 长江口及东海陆架区颗粒物和沉积物中类脂生物标志物的对比研究[J]. 地球环境学报, 2012, 3(4): 982-994 doi: 10.7515/JEE201204008

    JIANG Yiqing, XING Lei, ZHANG Penghui, et al. Comparisons of lipid biomarkers from suspended particulates and sediments in the Changjiang Estuary and the East China Sea shelf[J]. Journal of Earth Environment, 2012, 3(4): 982-994. doi: 10.7515/JEE201204008

    [33] 李凤, 贺行良, 徐刚, 等. 东海近岸表层沉积物中脂肪酸与脂肪醇的组成以及分布与来源[J]. 海洋地质与第四纪地质, 2016, 36(4): 13-18 doi: 10.16562/j.cnki.0256-1492.2016.04.002

    LI Feng, HE Xingliang, XU Gang, et al. Composition, distribution and source of fatty acids and fatty alcohols in marine surface sediments of the East China Sea[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 13-18. doi: 10.16562/j.cnki.0256-1492.2016.04.002

    [34] 陈曦, 毕蓉, 张海龙, 等. 2013年和2011年夏季南黄海和东海表层悬浮颗粒物中生物标志物的对比分析[J]. 中国海洋大学学报, 2017, 47(8): 103-111

    CHEN Xi, BI Rong, ZHANG Hailong, et al. Contrastive analysis of biomarkers in suspended particles in the southern Yellow Sea and East China Sea between the summer of 2013 and 2011[J]. Periodical of Ocean University of China, 2017, 47(8): 103-111.

    [35]

    Bi R, Chen X, Zhang J, et al. Water mass control on phytoplankton spatiotemporal variations in the northeastern East China Sea and the Western Tsushima strait revealed by lipid biomarkers[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(4): 1318-1332. doi: 10.1002/2017JG004340

    [36]

    Cao Y L, Bi R, Wang X C, et al. The sources and burial of marine organic carbon in the Eastern China marginal seas[J]. Frontiers in Marine Science, 2022, 9: 824181. doi: 10.3389/fmars.2022.824181

    [37] 王妃, 邢磊, 张海龙, 等. 类脂生物标志物重建近150年来东海陆架区DH5-1站位浮游植物生态结构及陆源输入的变化[J]. 中国海洋大学学报, 2012, 42(11): 66-72

    WANG Fei, XING Lei, ZHANG Hailong, et al. Applications of lipid biomarkers for reconstructing changes of phytoplankton ecological structure and terrestrial input in core DH5-1 from the shelf of the East China Sea during the last 150 years[J]. Periodical of Ocean University of China, 2012, 42(11): 66-72.

    [38]

    Xing L, Zhao M X, Zhang T, et al. Ecosystem responses to anthropogenic and natural forcing over the last 100 years in the coastal areas of the East China Sea[J]. The Holocene, 2016, 26(5): 669-677. doi: 10.1177/0959683615618248

    [39]

    Lian E G, Yang S Y, Wu H, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4790-4803. doi: 10.1002/2016JC011869

    [40]

    Zhang W X, Wu H, Hetland R D, et al. on mechanisms controlling the seasonal hypoxia hot spots off the Changjiang river estuary[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8683-8700. doi: 10.1029/2019JC015322

    [41]

    Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004

    [42]

    Zhao B, Yao P, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608.

    [43]

    Volkman J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506. doi: 10.1007/s00253-002-1172-8

    [44] 丁玲, 邢磊, 赵美训, 等. 东海陆架区悬浮颗粒物中浮游植物生物标志物比例及种群结构意义[J]. 中国海洋大学学报, 2007, 37(S2): 143-148

    DING Ling, XING Lei, ZHAO Meixun, et al. Phytoplankton biomarker ratios in suspended particles from the continental shelf of the East China Sea and their implications in community structure reconstruction[J]. Periodical of Ocean University of China, 2007, 37(S2): 143-148.

    [45]

    Yang D Z, Yin B S, Sun J C, et al. Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer[J]. Journal of Marine Systems, 2013, 123-124: 1-18. doi: 10.1016/j.jmarsys.2013.04.002

    [46]

    Tseng Y F, Lin J, Dai M, et al. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River[J]. Biogeosciences, 2014, 11(2): 409-423. doi: 10.5194/bg-11-409-2014

    [47]

    Duan L Q, Song J M, Yuan H M, et al. The use of sterols combined with isotope analyses as a tool to identify the origin of organic matter in the East China Sea[J]. Ecological Indicators, 2017, 83: 144-157. doi: 10.1016/j.ecolind.2017.07.042

    [48]

    Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles, 2006, 20(3): GB3014.

    [49]

    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    [50]

    Wang C L, Hao Z, Gao J H, et al. Reservoir construction has reduced organic carbon deposition in the East China Sea by Half Since 2006[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087357.

    [51]

    Bai Y, He X Q, Pan D L, et al. Summertime Changjiang River plume variation during 1998-2010[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 6238-6257. doi: 10.1002/2014JC009866

    [52]

    Tian R C, Sicre M A, Saliot A. Aspects of the geochemistry of sedimentary sterols in the Chang Jiang estuary[J]. Organic Geochemistry, 1992, 18(6): 843-850. doi: 10.1016/0146-6380(92)90052-Y

    [53]

    Harvey H R, Macko S A. Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions[J]. Organic Geochemistry, 1997, 27(3-4): 129-140. doi: 10.1016/S0146-6380(97)00077-6

    [54]

    Wakeham S. Diagenesis of organic matter at the water-sediment interface[M]//Gianguzza A, Pelizzetti E, Sammartano S. Chemistry of Marine Water and Sediments. Berlin, Heidelberg: Springer, 2002: 147-164.

    [55]

    Bao R, McIntyre C, Zhao M X, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10): 791-794. doi: 10.1130/G37948.1

    [56]

    Wu X D, Wu B, Jiang M Y, et al. Distribution, sources and burial flux of sedimentary organic matter in the East China Sea[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1488-1501. doi: 10.1007/s00343-020-0037-2

    [57]

    Sun M Y, Wakeham S G. A study of oxic/anoxic effects on degradation of sterols at the simulated sediment-water interface of coastal sediments[J]. Organic Geochemistry, 1998, 28(12): 773-784. doi: 10.1016/S0146-6380(98)00043-6

    [58]

    Wakeham S G, Canuel E A. Degradation and preservation of organic matter in marine sediments[M]//Volkman J K. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin, Heidelberg: Springer, 2006: 295-321.

    [59]

    Gaskell S J, Eglinton G. Rapid hydrogenation of sterols in a contemporary lacustrine sediment[J]. Nature, 1975, 254(5497): 209-211.

    [60]

    Gagosian R B, Smith S O, Lee C, et al. Steroid transformations in Recent marine sediments[J]. Physics and Chemistry of the Earth, 1980, 12: 407-419. doi: 10.1016/0079-1946(79)90122-8

    [61]

    Gagosian R B, Heinzer F. Stenols and stanols in the oxic and anoxic waters of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1979, 43(4): 471-486. doi: 10.1016/0016-7037(79)90159-5

    [62]

    Wakeham S G. Reduction of stenols to stanols in particulate matter at oxic-anoxic boundaries in sea water[J]. Nature, 1989, 342(6251): 787-790. doi: 10.1038/342787a0

    [63]

    Wakeham S G. Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(10): 1749-1771. doi: 10.1016/0967-0637(95)00074-G

    [64]

    Sheridan C C, Lee C, Wakeham S G, et al. Suspended particle organic composition and cycling in surface and midwaters of the equatorial Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(11): 1983-2008. doi: 10.1016/S0967-0637(02)00118-8

    [65]

    Tolosa I, LeBlond N, Copin-Montégut C, et al. Distribution of sterol and fatty alcohol biomarkers in particulate matter from the frontal structure of the Alboran Sea (S. W. Mediterranean Sea)[J]. Marine Chemistry, 2003, 82(3-4): 161-183. doi: 10.1016/S0304-4203(03)00051-3

    [66]

    Gagosian R B, Lee C, Heinzer F. Processes controlling the stanol/stenol ratio in Black Sea seawater and sediments[J]. Nature, 1979, 280(5723): 574-576. doi: 10.1038/280574a0

    [67]

    Smith D J, Eglinton G, Morris R J, et al. Aspects of the steroid geochemistry of an interfacial sediment from the Peruvian upwelling[J]. Oceanologica Acta, 1983, 6(2): 211-219.

    [68]

    Wakeham S G, Hedges J I, Lee C, et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9-10): 2131-2162. doi: 10.1016/S0967-0645(97)00035-0

    [69]

    Arzayus K M, Canuel E A. Organic matter degradation in sediments of the York River estuary: effects of biological vs. physical mixing[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 455-464. doi: 10.1016/j.gca.2004.06.029

    [70]

    Nishimura M, Koyama T. The occurrence of stanols in various living organisms and the behavior of sterols in contemporary sediments[J]. Geochimica et Cosmochimica Acta, 1977, 41(3): 379-385. doi: 10.1016/0016-7037(77)90265-4

    [71]

    Nishimura M. 5β-isomers of stanols and stanones as potential markers of sedimentary organic quality and depositional paleoenvironments[J]. Geochimica et Cosmochimica Acta, 1982, 46(3): 423-432. doi: 10.1016/0016-7037(82)90233-2

    [72]

    Zhou F, Chai F, Huang D J, et al. Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system: the Changjiang (Yangtze River) estuary[J]. Frontiers in Marine Science, 2020, 7: 259. doi: 10.3389/fmars.2020.00259

    [73]

    Canuel E A, Martens C S. Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment-water interface[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1793-1806. doi: 10.1016/0016-7037(96)00045-2

    [74] 王鹏, 吴莹, 刘素美, 等. 长江口外低氧区及其邻近海域表层沉积物反硝化微生物多样性和分布特征[J]. 微生物学报, 2021, 61(6): 1474-1487 doi: 10.13343/j.cnki.wsxb.20200791

    WANG Peng, WU Ying, LIU Sumei, et al. Diversity and distribution of denitrifying microorganisms in the surface sediments of the hypoxic zone near the Changjiang Estuary and its offshore[J]. Acta Microbiologica Sinica, 2021, 61(6): 1474-1487. doi: 10.13343/j.cnki.wsxb.20200791

    [75] 吕晓霞, 翟世奎. 长江口柱状沉积物中甾醇的组成特征及其地球化学意义[J]. 海洋学报, 2006, 28(4): 96-101

    LÜ Xiaoxia, ZHAI Shikui. The distributions and geochemistry of sterols in core sediment from the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2006, 28(4): 96-101.

    [76] 姜善春, 贾蓉芬, 王岩, 等. 中国南海北部湾海洋柱状沉积物中甾烯醇甾烷醇的演化[J]. 沉积学报, 1991, 9(S1): 97-102 doi: 10.14027/j.cnki.cjxb.1991.s1.013

    JIANG Shanchun, JIA Rongfen, WANG Yan, et al. The evolution of stenols and stanols in marine sediment core from Beibuwan gulf, South China Sea[J]. Acta Sedimentologica Sinica, 1991, 9(S1): 97-102. doi: 10.14027/j.cnki.cjxb.1991.s1.013

    [77] 段毅, 崔明中, 马兰华. 南沙海域中大陆坡沉积物中甾醇的地球化学研究[J]. 地球化学, 1998, 27(1): 74-80 doi: 10.3321/j.issn:0379-1726.1998.01.009

    DUAN Yi, CUI Mingzhong, MA Lanhua. Geochemistry of sterols in marine sediments from the middle continental slope of Nansha sea[J]. Geochimica, 1998, 27(1): 74-80. doi: 10.3321/j.issn:0379-1726.1998.01.009

    [78]

    Qiu H, Zou L, Zhang M S, et al. Occurrence of different forms and implications of compound specific sterols in continental sediments of the northeast South China Sea[J]. Acta Geologica Sinica - English Edition, 2019, 93(2): 420-429. doi: 10.1111/1755-6724.13775

图(7)  /  表(4)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  91
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-05
  • 修回日期:  2023-07-17
  • 录用日期:  2023-07-17
  • 网络出版日期:  2023-08-22
  • 刊出日期:  2023-12-27

目录

    /

    返回文章
    返回