黄河下游湖泊沉积物的磁性特征及指示的物源信息与环境变化

张蕊, 陈诗越, 邢力, 陈影影

张蕊,陈诗越,邢力,等. 黄河下游湖泊沉积物的磁性特征及指示的物源信息与环境变化[J]. 海洋地质与第四纪地质,2024,44(5): 161-175. DOI: 10.16562/j.cnki.0256-1492.2024060301
引用本文: 张蕊,陈诗越,邢力,等. 黄河下游湖泊沉积物的磁性特征及指示的物源信息与环境变化[J]. 海洋地质与第四纪地质,2024,44(5): 161-175. DOI: 10.16562/j.cnki.0256-1492.2024060301
ZHANG Rui,CHEN Shiyue,XING Li,et al. Provenance and environmental evolution indicated by magnetic characteristics of lake sediments in the lower Yellow River[J]. Marine Geology & Quaternary Geology,2024,44(5):161-175. DOI: 10.16562/j.cnki.0256-1492.2024060301
Citation: ZHANG Rui,CHEN Shiyue,XING Li,et al. Provenance and environmental evolution indicated by magnetic characteristics of lake sediments in the lower Yellow River[J]. Marine Geology & Quaternary Geology,2024,44(5):161-175. DOI: 10.16562/j.cnki.0256-1492.2024060301

黄河下游湖泊沉积物的磁性特征及指示的物源信息与环境变化

基金项目: 国家自然科学基金项目“中晚全新世黄河下游湖泊沉积物磁性特征及河道变迁”(41907370),“历史时期黄河下游湖泊消亡过程与机制及沉积碳埋藏量估算”(41871073),“东平湖沉积物物源示踪及黄河洪水事件判识”(41701101);江苏师范大学科研创新项目(9212618101)
详细信息
    作者简介:

    张蕊(1987—),女,博士,讲师,主要从事第四纪沉积环境和晚新生代东亚季风演化研究,E-mail:ruizhang@jsnu.edu.cn

    通讯作者:

    陈诗越(1969—),男,博士,教授,主要从事湖泊沉积与环境演变研究,E-mail:chenshiyue@jsnu.edu.cn

  • 中图分类号: P736.2

Provenance and environmental evolution indicated by magnetic characteristics of lake sediments in the lower Yellow River

  • 摘要:

    湖泊沉积物是记录黄河决溢、改道和沉积环境变化的重要地质载体。由于以往研究很难有效区分出黄河物质以及区域内其他物质的信息,导致对黄河下游湖泊物源解析和沉积过程探讨不精准,影响了对下游黄河变迁和沉积环境演化的认知。本文基于黄河下游现代沉积物及湖泊钻孔磁性矿物特征研究,探析大野泽钻孔洪泛沉积物潜在物源和黄墩洼地钻孔沉积物记录的重要沉积过程,提取相关黄河下游河道和沉积环境变化信息。基于磁性矿物类型、粒径和组分差异,识别出大野泽钻孔洪泛沉积物主要物源为黄河泥沙,证实了磁性矿物特征分析在物源识别中的有效性并可以用来探究湖泊沉积过程。进一步通过高分辨率的环境磁学指标与粒度、总有机碳(TOC)等环境代用指标的综合分析,揭示苏北黄墩洼地沉积环境发生了重要转变。黄墩洼地自早/中全新世(约9712 aBP)以来经历了截然不同的沉积过程,即由接收陆源碎屑沉积到逐渐转化为河流洪泛物质沉积。两种沉积环境转变大致出现在4201 aBP,暗示了黄河最早影响苏北黄墩地区的时间。以上基于磁性矿物特征的物源分析和沉积环境变化探讨,为深入理解黄河下游的变迁规律及其与湖泊的相互关系提供了重要科学参考。

    Abstract:

    Lake sediments in the Yellow River reached are important geological carriers that record the overflow, diversion, and sedimentary environment changes of the river. Previously, it was difficult to effectively distinguish the Yellow-River-soured materials from those from other sources in the region, our knowledge of provenance and sedimentation in the lakes in the lower Yellow River reaches were inaccurate, which affected the comprehension of the changes in the lower Yellow River and the evolution of the sedimentary environment. The magnetic mineral characteristics of modern sediments and lake boreholes in the lower reaches of the Yellow River were studied. The sources of floodplain sediments in the Dayeze Lake borehole and the major sedimentary processes recorded in the Huangdun Depression borehole sediments in the northern Jiangsu were analyzed, from which key information of changes in river channel and sedimentary environment of the lower Yellow River reaches was extracted. Based on the differences in magnetic mineral types, particle sizes, and components, the main source of flood sediments in the Dayeze Lake borehole was identified as Yellow River silt, which confirms the effectiveness of magnetic mineral characteristic analysis in source identification and can be used to explore lake sedimentary processes. Furthermore, through the comprehensive analysis of high-resolution environmental magnetic indicators and environmental proxy indicators such as particle size and total organic carbon (TOC), it was revealed that since the early/middle Holocene (~9712 aBP), the sedimentary environment in the Huangdun Depression underwent very different sedimentation processes and the major transition from lacustrine terrigenous clastic facies to river flood facies took place at ~4201 aBP, indicating the earliest time when the Yellow River affected the Huangdun area in the northern Jiangsu. The above provenance analysis based on magnetic mineral characteristics and the discussion on sedimentary environment changes provide important scientific references for a deeper understanding of the changes in the lower reaches of the Yellow River and its relationship with lakes.

  • 深水油气勘探是世界油气勘探增长的主要来源,南海南部深水油气盆地是中国海域油气勘探的重点区域[1-4]。南薇西盆地位于南海南部深水区(图1),主体水深1 800~2 000 m,盆地整体呈SN向展布,其西、北以广雅隆起区分别与万安盆地、中建南盆地相隔,其南部以隆起带和岛礁区与北康盆地相邻[5],盆地面积约3.3×104 km2,最大沉积厚度达11000 m[6],油气资源前景广阔。其邻区万安盆地、中建南盆地、北康盆地已有钻井或油气发现[7-8],相比邻区盆地,南薇西盆地勘探程度较低。国外在盆地西南角(国外Vung May盆地位置)有一口井H井,该井详细资料未公开发表。

    图  1  南海南部主要盆地分布及研究区位置图
    钻井资料来自IHS数据库。
    Figure  1.  The distribution of basins in southern South China Sea and the location of the study area
    The wells data come from IHS database.

    受资料限制,前人基于地震资料,结合区域地质背景和盆地形成演化过程,主要开展了地层层序划分、地层沉积特征、油气资源前景等研究[6, 9-10]。由于缺乏钻井、古生物、测井等资料,前人主要参考邻区盆地地层划分方案,确定南薇西盆地地层划分及其年代,但未达成统一认识。孙珍等[2]认为南薇西盆地与北康盆地在盆地类型、形成演化过程,地层与结构等方面都较为相似,常将两盆地并列论述,两盆地地层层序划分及年代等结论一致。杨木壮等则认为南薇西盆地地层划分及年代与万安盆地相同。准确划分南薇西盆地地层层序,厘定地层年代,分析地层生储盖组合特征,对盆地油气勘探具有重要意义。

    本文参考前人研究成果,以高品质地震资料为基础,广泛搜集、整理邻区盆地钻井资料,分析区域地质事件对地层发育的影响,以地质事件响应在地震剖面上的不整合面作为划分地层层序的依据。在综合利用地震资料、钻井资料建立南薇西盆地邻区万安盆地地层层序格架基础上,利用跨盆地地震剖面的识别追踪,参考万安盆地划分南薇西盆地地层层序,依托区域地质事件年代及邻区钻井资料揭示的地层年代,探讨南薇西盆地地层年代,分析南薇西盆地地层生储盖组合特征,探讨油气地质意义。

    为了准确划分南薇西盆地地层层序,厘定地层年代,分析地层生储盖组合特征及其油气地质意义,本文通过理清区域地质演化过程对地层发育的影响,以重要地质事件形成的不整合面作为地层层序划分依据。参考前人成果,在综合利用地震及钻井资料建立万安盆地地层层序格架基础上,利用跨南薇西盆地和万安盆地地震测线,确定南薇西盆地地层层序划分,综合区域地质事件年代及邻区钻井资料揭示的地层年代,探讨南薇西盆地地层年代。南薇西盆地邻区的万安盆地,国外公布的钻井资料最多,前人研究程度较高,认识比较统一,具备作为参考的基础。两盆地间存在跨盆地长地震测线,地震资料显示原来分隔两盆地的广雅隆起区沉积有较厚的地层(图2),地震反射界面可以连续追踪识别,为地震资料解释追踪识别提供了有利条件。

    图  2  地震测线M局部剖面图
    图1中M测线红色段。
    Figure  2.  Seismic profile of M line
    Red section of seismic line M in Fig.1.

    本文所用钻井资料来自国外IHS数据库,收集整理了万安盆地国外16口钻井资料,其中10口井钻遇盆地基底,7口井(井位置见图1)具有完整的岩性剖面,有2口井钻遇碳酸盐岩。所用跨南薇西盆地和万安盆地的地震剖面为广州海洋地质调查局在该区域取得的高品质地震测线(测线位置见图1)。测线为东西向长测线,覆盖万安盆地、广雅隆起和南薇西盆地,在万安盆地部分有三口国外钻井紧邻测线。

    南薇西盆地奠基在南沙地块,新生代以来欧亚板块、太平洋板块和印-澳板块三大板块相互作用,引发多期构造运动,古南海的俯冲消亡和新南海的多期扩张,又进一步影响了盆地地层发育。构造运动对海平面变化和物源供给起决定性作用,是控制地层层序发育的核心因素[11],在地震剖面上构造运动往往与不整合面对应。通过理清南薇西盆地区域地质演化过程,建立不整合面与重要地质事件的关系。区域钻井、地震等资料综合显示,南沙海域新生代经历了6次重要构造运动和2次全球性海平面升降变化(表1[12-13],包括晚白垩世礼乐运动、中始新世末西卫运动、早渐新世末全球海平面下降、晚渐新世末南海运动、早中新世末南沙运动、中中新世末万安运动和全球海平面下降以及晚中新世末广雅运动。

    下载: 导出CSV 
    | 显示表格

    礼乐运动(Tg):晚白垩世,太平洋板块向欧亚板块俯冲发生后撤[14],导致东亚陆缘应力松弛[15],形成了一系列NE向断裂和地堑或半地堑,奠定了南海沉积盆地发育的构造格局,南薇西盆地开始形成,形成盆底基底不整合面Tg。该期构造运动命名为礼乐运动,对应南海北部的神狐运动。礼乐盆地sampagita-1 井和A-1 井均钻遇礼乐运动形成的不整合面,钻井资料显示地层时代为中生代末期(58.7 Ma)[16]

    西卫运动(T5):50 Ma印度-欧亚板块汇聚速度由12~20 cm/a骤降至5 cm/a,印度板块开始与欧亚板块接触发生软碰撞。约43.5 Ma印度板块与欧亚板块全面硬碰撞,碰撞大约呈NE25°方向[17],42 Ma太平洋板块向欧亚板块俯冲方向由NNW变成NWW,两侧挤压应力环境造成华南地区南北向拉伸作用增强,区域地壳强烈减薄,南薇西盆地裂陷增强,盆地形成演化加速。伴随古南海向南俯冲消减,南沙块体从华南大陆边缘裂离,向东南方向漂移,南薇西盆地由陆相沉积环境,逐渐向海相沉积环境过渡。中始新世末,曾母地块与北婆罗洲碰撞,形成不整合面T5,婆罗洲北部边缘拉姜群强烈挤压变形,石英岩脉充填其间显示了此次碰撞。礼乐sampagita-1井证实中始新世与晚始新世之间(40.4 Ma)存在不整合面,这次运动被命名为西卫运动[18],国外Hutchison称之为沙捞越造山运动[19]

    南海运动(T4):南沙地块向南漂移期间受到新南海多期次扩张的影响,南海扩张动力学成因模式存在争论,但根据异常磁条带分析确定的南海扩张演化过程基本能达成统一。异常磁条带资料显示,早渐新世末(约32 Ma),南海东部次海盆沿南北方向开始扩张,晚渐新世末(约23.8 Ma),扩张脊跃迁,西南次海盆由北东向南西逐渐打开[20-21]。15 Ma东部次海盆停止扩张,16 Ma西南次海盆扩张结束,IODP349航次钻探结果验证了两次海盆扩张停止的时间[22]。南海扩张造成了盆地裂陷作用的进一步加剧,南海扩张具有多期次性,不同次海盆扩张影响的范围不同。前人研究礼乐盆地和北康盆地地层时,将形成早、晚渐新世之间不整合面的构造运动命名为“南海运动”,虽具体时间上存在差异,但均归因为东部次海盆扩张的影响。南薇西盆地距离东部次海盆较远,东部次海盆扩张可能很难对其造成显著影响,根据李家彪研究成果[23],西南次海盆是在23.8 Ma扩张脊发生跃迁之后才开始扩张,并且扩张是沿扩张脊东北向西南逐渐打开,因此32 Ma年南海西南部可能未有海盆扩张影响。且南海西南部万安盆地、中建南盆地钻井资料证实,晚渐新世末期,盆地存在不整合面,对应西南次海盆的扩张时期。南薇西盆地毗邻万安盆地,距离西部次海盆较近,由“南海运动”形成的不整合面年代应当也对应为西南次海盆扩张时间23.8 Ma。南海西南次海盆的扩张造成了南薇西盆地进一步裂解,形成T4不整合面。

    南沙运动(T31):古地磁数据显示,早中新世—中中新世婆罗洲地块发生了逆时针旋转,这种旋转可能导致南沙地块与西北婆罗洲沿南沙海槽东南侧,由南西向北东方向依次碰撞[24]。16.5 Ma南沙地块与婆罗洲地块北部碰撞,碰撞导致南海东部次海盆和西部次海盆几乎同时停止扩张。碰撞产生褶皱、不整合和逆冲断裂、推覆逆掩体等,在南海南部形成一个非常显著的区域性不整合面T31,Mulu-1和Bako-1两口钻井,钻遇该不整合面,两口井的古微生物资料揭示,不整合面时间为16.5 Ma[25]。国外称碰撞不整合面(Collision Unconformity,CU)或中中新世不整合面(Middle Miocene Unconformity ,MMU)。此次构造运动在北婆罗洲地区表现为沙巴造山运动,在南海南部海域对应南沙运动。碰撞形成的T31不整合面是离碰撞带较近的北康盆地和曾母盆地最为显著的不整合面,但在离碰撞带较远的南薇西盆地仅局部发育。南沙运动使南薇西盆地随南沙地块定位到现今位置,盆地受南海扩张影响结束,进入热沉降阶段。

    万安运动(T3):吴进民[26]在研究万安盆地地层时,根据中中新世和晚中新世地层之间存在一区域不整合面,首次提出万安运动,钻井资料揭示该不整合面年代为10.4 Ma。万安运动引起南薇西盆地隆升剥蚀,形成盆地最为显著的不整合面,对应T3不整合面。前人对于万安运动的成因并未形成明确而统一的解释,一些人认为万安运动是由南海西缘万安断裂右旋走滑引起,区域构造应力场由张扭转为压扭,盆地隆升遭受剥蚀,产生花状、褶皱等构造,但是走滑运动作用有限,不足以影响整个南海南部盆地。一些人认为11 Ma礼乐-东北巴拉望与加里曼丹-苏禄地块碰撞,10.5 Ma菲律宾海板块与欧亚板块在吕宋岛和民都洛岛位置发生碰撞,产生北东向挤压,在复杂构造运动综合影响下可能形成了万安运动[27-28]。中中新世晚期(15~12 Ma),印度板块东缘与东南亚西部边缘发生斜向碰撞,导致印缅山脉的形成并抬升。因此,中中新世期间,南海地区周边整体上处于挤压的构造应力场作用之下,这可能是南沙运动产生的根本原因,但万安运动确切的动力学成因还需进一步研究。

    广雅运动(T2):中新世末(约5.3 Ma),广雅运动造成盆地隆升剥蚀,形成了区域不整合面,万安盆地和中建南盆地钻井揭示5.3 Ma存在不整合面,南薇西盆地对应T2不整合面。上新世之后南薇西盆地整体进入海相沉积环境,发育了巨厚的泥岩。前人将造成此次不整合面的构造运动称为广雅运动,广雅运动成因同样未形成共识。解习农等[13]认为5.5~5 Ma期间,斑-苏禄地块和巽他地块发生碰撞,菲律宾弧和巴拉望地块碰撞,台湾岛弧-陆碰撞,碰撞造成中新世和上新世之间存在不整合。

    Haq[29]研究表明新生代以来全球发生了两次海平面剧烈下降,分别对应早渐新世末期和中中新世末期。在全球海平面剧烈下降背景下,构造运动造成的区域地层隆升,造成地层剥蚀,两种地质事件共同作用形成盆地强烈不整合面。

    不整合面是地层层序划分的重要依据,基于层序地层学原理,根据地震反射的终止现象,包括超覆尖灭(底超、顶超)、削截、上超等,在南薇西盆地识别了T1、T2、T3、T31、T4、T5、Tg共7个新生代地震反射不整合界面,其中T31不整合面仅局部发育。

    Tg界面为盆地新生界基底,总体为中-低频、强振幅、中连续-断续反射。同相轴粗糙,具有风化面反射特征;在坳陷区,多呈低频、中-强振幅、断续反射,不易连续追踪;在斜坡区为低频、强振幅、连续反射,界面上部反射结构特征清晰,下部为杂乱反射。

    T5界面总体为中-低频、中-低振幅、中-低连续反射。界面上部为亚平行结构,反射连续性好,具有低频率、中-强振幅反射特征;界面之下为中频、中-强振幅、中-低连续反射,与界面之上地层相比,反射轴连续性明显变差,反射较为杂乱。

    T4界面多为中-低频、较连续的强反射,产状大体与T5界面平行。界面之上为中-低频、中-强振幅反射,连续性较好,界面之下为中-低频、中-强振幅反射,连续性差。

    T31界面在南薇西盆地仅在南部可局部追踪,在其他位置没有明显的识别特征,但实际地层中该界面应该存在,万安盆地和北康盆地都有钻井钻遇该不整合面。

    T3界面是盆地内表现最为强烈的削截面,是变形前后两大套地层的分界,上覆地层未变形或轻微变形,具上超充填特征,下伏地层发生不同程度变形,断层和褶皱发育,断层延伸多在此界面截止;该界面起伏大,同相轴粗糙、扭曲。

    T2界面为高连续、强振幅反射,界面平直、稳定,受断层活动影响较小,全区均能较可靠追踪对比。界面上下反射层未变形或轻微变形。

    T1界面在调查区广泛分布,界面平直、稳定、连续性好,其反射特征与T2界面相似。

    前人综合地震资料、区域地质背景、区域钻井等资料,在区域内识别追踪出不整合面,进行了盆地地层层序划分(表2)。万安盆地国外钻井资料丰富,前人对盆地地层层序划分认识比较一致[2, 5, 30-31]。南薇西盆地无钻井资料限定,前人对地层层序划分具有不同认识,但基本与万安盆地一致,差异在于早中新世不整合面(T31)是否存在以及渐新世不整合面(T4)的年代。南薇西盆地和万安盆地存在跨盆地的地震测线M(图1),本文将测线M万安盆地范围内识别的地震反射不整合面延伸至南薇西盆地,参考万安盆地划分南薇西盆地地层,因而准确建立万安盆地地层层序格架是基础。与前人认识一致,本文在万安盆地内识别了7条地震反射不整合面,收集的5口国外钻井资料同样证实了盆地内7条不整合面的存在,具体情况在层序地层年代部分有论述,此处暂不展开。地震资料解释的不整合面与钻井钻遇的不整合面是否一致需要验证。下面通过地震资料和钻井资料对比分析,确定测线M在万安盆地内地震解释的正确性。

    下载: 导出CSV 
    | 显示表格

    万安盆地内测线M附近有三口国外钻井,由西向东为A、B和C,位置见图1,井资料如表3。三口井井柱如图3,A井完井井深2462 m,钻遇晚白垩纪基底,钻深2237 m钻遇中新世和上新世之间不整合面,不整合面之下发育中中新世碳酸盐岩,晚中新世地层被剥蚀,界面之上为上新世泥岩;B井完井井深2593 m,钻深2312 m钻遇中新世和上新世不整合面,界面之上为上新世巨厚的泥岩,界面之下开始钻遇碳酸盐岩和砂岩,钻深2363 m钻遇中中新世和晚中新世之间不整合面,钻遇中中新世碳酸盐岩;C井完井井深2442 m,井深2313 m钻遇中新世和上新世不整合面,界面之上为泥岩夹砂岩,界面之下为泥岩,推测下部地层有碳酸盐岩发育。

    表  3  万安盆地过测线M井资料
    Table  3.  Data of the wells crossing seismic line M in Wanan Basin
    井名井深/m钻遇碳酸盐岩深度/m碳酸盐岩年代
    A24622237中中新世
    B25932363中中新世
    C2442
    下载: 导出CSV 
    | 显示表格
    图  3  万安盆地过测线M测线井柱
    根据IHS数据修改。
    Figure  3.  Wells crossing seismic line M in Wan’an Basin
    Based on IHS database.

    分析国内过井测线M地震剖面,据碳酸盐台地的外部几何形态、内部反射结构及其与周围岩层的接触关系等,可以识别出碳酸盐岩台地(图4)。台地顶界反射清晰,具有连续、低频、强振幅反射特征,界面之上碎屑岩以下超接触形式覆盖在碳酸盐岩台地之上,台地内部呈连续性较差的弱反射特征,台地左侧边缘发育生物礁,生物礁界面上超特征明显,台地右侧边缘为断层界面。根据中海油[32]研究中心提供的南沙地区地震波时深转换经验公式$ y=-5.1578{x}^{3}+133.48{x}^{2}+712.06x-2.4356 $,式中y是地层深度,x为双程走时。碳酸盐岩台地顶界双程走时时间约为2.5 s,计算地震剖面上深度为2274 m,与钻井钻遇的碳酸盐岩深度相当(表3)。井震资料对比表明,万安盆地测线M地震剖面地层划分方案是可靠的。参考万安盆地层序划分方案,根据地震剖面反射特征可对比划分南薇西盆地地层(图5)。

    图  4  测线M碳酸盐岩台地地震剖面
    Figure  4.  Seismic profile of the carbonate platform in seismic line M
    图  5  测线M地震剖面图
    Figure  5.  Seismic section of line M

    万安盆地国外已有大量钻井钻遇盆地基底,钻井岩性显示基底主要为晚中生代侵入岩、火山岩和变质沉积岩[33-34]。本文收集了10口钻遇基底的钻井(表4),主要钻遇白垩纪花岗岩、花岗质片麻岩和侵入岩,05-DH-03X井钻遇晚侏罗纪花岗岩,年代较老,该井位于盆地隆起位置,早期地层剥蚀可能比较严重。

    表  4  万安盆地基底钻井资料
    Table  4.  Wells penetrated the basement of the Wanan Basin
    井名井深/m岩性年代
    04-A 1X2462风化基底,花岗岩白垩纪
    05-1a-DH03P2569花岗质片麻岩白垩纪
    05-1a-DH05P2994花岗质片麻岩白垩纪
    05-1a-DH05X3094花岗质片麻岩白垩纪
    05-DH 02X2836花岗岩白垩纪
    05-DH 03X3758花岗岩晚侏罗世
    06-A 1X4202花岗岩白垩纪
    12-B 1X3948侵入火成岩白垩纪
    12-C 1X3657侵入火成岩白垩纪
    12W-CC 1X2894花岗岩、闪长岩白垩纪
      注:井资料来自IHS数据库。
    下载: 导出CSV 
    | 显示表格

    南薇西盆底目前仅有一口钻井H井,未钻遇盆地基底。围区万安盆地基底年代均为晚白垩世,基底岩性以花岗岩、侵入岩和变质岩为主。参考围区盆地基底,推测南薇西盆地基底年代为晚白垩世,主要发育花岗岩、火成岩和变质岩。

    构造运动以不整合面响应在地震剖面上,通过前文梳理的区域地质事件年代可以初步限定不整合面的时代。通过跨盆地地震测线M连续追踪识别,划分了南薇西盆地地层层序,因而通过万安盆地地层年代的准确厘定,可以进一步厘定南薇西盆地地层年代。

    本文收集整理了万安盆地5口钻井资料(图6),万安盆地内基底不整合面和渐新世以来不整合面均有钻井钻遇,钻井资料揭示了不整合面年代。T1不整合面是新近纪与第四纪的分界面。年代为1.8 Ma。界面上下地层以不整合-假整合接触,界面之上为第四系砂泥岩互层。T2不整合面是上新世与中新世的分解面,对应广雅运动,年代5.3 Ma,不整合面为中-低频,中-强振幅,连续反射。界面上下以不整合-假整合接触,地层主要为较厚的砂岩夹泥岩,部分区域为砂泥岩混层并发育泥灰岩。T3不整合面是盆地内最显著的不整合面,对应万安运动,年代为10.4 Ma,不整合面为中频,强振幅,中连续-连续反射,与下覆地层不整合接触,界面之上地层上超,底超明显,界面之上地层未变形或微弱变形,主要发育泥岩和灰岩,界面之下地层发生明显变形,被断层错断明显。T31不整合面对应南沙运动,年代为16.5 Ma,界面以中低频、较连续反射为特征,界面上下呈不整合-假整合接触,界面之上地层灰岩发育,部分地区地层直接覆盖在基底之上。T4不整合面是西南次海盆扩张的响应,不整合面呈中-低频、中-强振幅反射特征,年代为23.8 Ma,不整合面上下以不整合-假整合接触,界面上地层以砂岩为主。T5不整合面对应西卫运动,年代为40.4 Ma,不整合面特征为低频、强振幅反射,界面粗糙,连续性差,隆起部位与基底不整合面重合,界面上下以假整合-不整合接触,万安盆地内目前公布的钻井井深较浅,未钻遇该不整合面,该界面是根据地震剖面结合区域地质事件推测得到的。Tg不整合面为基底不整合面,为低频、强振幅、断续-中连续反射,基底主要为晚中生代侵入岩、火山岩和变质沉积岩组成[34-35],部分区域中新世或渐新世地层直接覆盖在基底之上。

    图  6  万安盆地钻井连井剖面
    井资料来自IHS数据库。
    Figure  6.  Drilling columns in Wan’an Basin
    The wells data come from IHS database.

    综合以上区域地质事件、盆地基底特征及成盆年代、邻区地层年代等研究,可以确定南薇西盆地不整合面年代及其地质属性:T1为1.8 Ma,是新近纪与第四纪的分界;T2为5.3 Ma,对应广雅运动;T3为10.4 Ma,对应万安运动;T31为16.5 Ma,对应南沙运动;T4为23.8 Ma,对应南海运动;T5为40.4 Ma,对应西卫运动;Tg为58.7 Ma,对应礼乐运动。

    南薇西盆地伴随南沙地块向南漂移过程中,受到一系列构造运动和南海形成演化的综合影响,地层由陆相向海相转变,发育多套烃源岩、储层和盖层,油气条件良好。可能发育中始新统、上始新统-下渐新统、上渐新统-中中新统3套烃源岩,发育中始新统、上始新统-下渐新统、上渐新统-中中新统、上中新统4套储层,上始新统-中中新统发育局部盖层,上新统—第四系发育区域盖层(表5)。晚始新世至中中新世,南薇西盆地断层发育,部分断层从盆地基底延伸至中中新统顶部,断层提供了上下地层油气运移通道,生储盖组合可能性增多。盆地内可能发育自生自储自盖、下生上储上盖、上生下储上盖3种类型生储盖组合。

    下载: 导出CSV 
    | 显示表格

    古新世至中始新世,南沙地块与华南古陆相连,盆地主要为河流和冲积环境的快速沉降,局部为湖相沉积环境。中始新统湖相、沼泽相泥岩、炭质泥岩和煤系地层可为良好的烃源岩,河流、冲积扇和冲积平原砂岩储集性能良好,可为盆地储层,泥岩可为良好的局部盖层,可形成自生自储自盖组合。通过断层与上部海相烃源岩沟通,也可以形成上生下储上盖组合。

    晚始新世至早渐新世,盆地进入海陆过渡沉积环境。上始新统—下渐新统,盆地坳陷内海相泥岩发育,是良好的烃源岩,海陆过渡相、浅海相砂岩可为盆地储层,海相泥岩封闭性能好,可为局部盖层,可形成自生自储自盖组合。受断层沟通影响,海陆过渡相砂岩储层也可与上部海相泥岩形成上生下储上盖组合,亦可与下部陆相烃源岩形成下生上储上盖组合。

    晚渐新世至中中新世,南薇西盆地逐渐全部进入海相沉积环境,发育浅海相砂岩储层。邻区盆地钻井显示,中中新世区域内广泛发育碳酸盐岩,南薇西盆地H井钻穿中新世至上新世碳酸盐岩,Bo N Q等[35]推测该井钻遇的碳酸盐岩可能在晚渐新世已经发育,盆地内碳酸盐岩地层亦可能成为盆地良好的储层。海相泥岩可为烃源岩也可成为良好局部盖层,可形成自生自储自盖组合,同时受断层影响,可以与深部海陆过渡相烃源岩、陆相烃源岩形成下生上储上盖组合。

    晚中新世以后,南薇西盆地发育大片厚层海相泥岩,形成区域性良好盖层,发育海岸平原、浅海砂岩和浊积岩储层。油气从较深部位沿断裂运移上来,可形成下生上储上盖组合。

    (1)根据地震反射特征,在南薇西盆地追踪识别出7条不整合面(T1,T2,T3,T31,T4,T5,Tg),将地层划分为7个层序,重新厘定南薇西盆地地层年代,除T1界面外,其他界面均有地质事件对应。T1界面年代为1.8 Ma;T2界面年代为5.3 Ma,对应广雅运动;T3界面年代为10.4 Ma,对应万安运动;T31界面年代为16.5 Ma,对应南沙运动;T4界面年代为23.8 Ma,对应南海运动;T5界面年代为40.4 Ma,对应西卫运动;Tg界面年代为58.7 Ma,对应礼乐运动。

    (2)中中新世末(10.4 Ma),万安运动形成的T3不整合面是南薇西盆地最显著的不整合面,该界面是变形前后地层的分界,界面之上地层基本无变形或变形微弱,界面之下地层变形明显,断层褶皱发育,盆地内断层延伸多在此界面终止。

    (3)根据国外钻井资料分析认为,南薇西盆地中新世发育碳酸盐岩地层,可以成为良好的储层。盆地内可能发育自生自储自盖、下生上储上盖、上生下储上盖3种类型生储盖组合。古新统至中始新统,可能发育自生自储自盖组合和上生下储上盖组合,上始新统至下渐新统,可能发育自生自储自盖组合、下生上储上盖组合和上生下储上盖组合,上渐新统—中中新统,可能发育自生自储自盖组合和下生上储上盖组合,上中新统以后,可能发育下生上储上盖组合。

  • 图  1   研究区及采样点位置

    a: 古大野泽与古黄墩洼地大致位置(依据文献资料[9, 49, 51]、区域地质图及野外考察确定)以及黄河下游现代采样点位置,b: 大野泽钻孔位置及局域环境, c: 黄墩洼地钻孔位置及局域环境。

    Figure  1.   Study area and location of sampling points

    a: The approximate locations of ancient Dayeze Lake and ancient Huangdun Depression (based on literatures[9, 49, 51], regional geological maps, and field investigations), as well as the modern sampling points in the lower reaches of the Yellow River; b: location and local environment of drilling hole in Dayeze Lake; c: location and local environment of drilling hole in Huangdun Depression.

    图  2   黄河下游湖泊钻孔岩性

    a:大野泽钻孔岩性,改自魏本杰等[10];b:黄墩洼地钻孔岩性。

    Figure  2.   Lithology of drilling holes in lakes of the lower Yellow River

    a: The lithology of drilling hole in Dayeze Lake (modified from Wei et al.[10]), b: the lithology of drilling hole in Huangdun Depression.

    图  3   典型样品热磁特征

    a-d: 磁化率随温度变化曲线(χ-T);e:低温环境中直流与交流变换系统下磁化强度变化曲线(ZFC)(黄色圆和红色三角组成的曲线,纵坐标为“SIRM 归一化”)及其一阶导数(黑色实线和虚线,纵坐标为-dSIRM/d温度)。HH为黄河样品,DYZ为大野泽洪泛沉积样品,DW为大汶河样品,TS为莱泰碎屑岩石样品。

    Figure  3.   Thermomagnetic characteristics of typical samples

    a-d: Temperature dependent curve of magnetic susceptibility (χ-T); e: magnetization intensity variation curve (ZFC) (the curves composed of yellow circles and red triangles with the vertical axis being “SIRM normalization”) and its first derivative (black solid and dashed lines with the vertical axis are “-dSIRM/dT”) under DC and AC conversion systems in low-temperature environments. HH: the Yellow River sample; DYZ: the Dayeze Lake fluvial sediments sample; DW: Dawen River sample; TS: the Laitai clastic rock sample.

    图  4   典型样品磁滞特征

    a-d:磁滞回线, e: 磁滞回线上下两条分支曲线差值相对于外加磁场一阶导数曲线(-dΔM/d磁场), f: Day 氏图。HH,DYZ,DW和TS样品同图3

    Figure  4.   Hysteresis characteristics of typical samples

    a-d: Hysteresis loops, e: the difference between the upper and lower branch curves of the hysteresis loop and the first-order derivative curve relative to the applied magnetic field (-dΔM/d magnetic field), f:the Day Plot. HH, DYZ, DW, and TS are the same to those in Fig. 3.

    图  5   典型样品的磁畴状态

    a: Néel图[55], b: Lascu图[56] 。SD:单畴, MD:多畴, SP:超顺磁颗粒, PSD:假单畴, USD:单轴单畴, CSD:稳定立方单畴, ISD:磁相互作用单畴, UNISD:单轴非相互作用单畴。HH,DYZ,DW和TS样品同图3

    Figure  5.   Magnetic domain states of typical samples

    a: The Néel plot[55], b: the Lascu plot[56]. SD: single domain, MD: multi-domain, SP: superparamagnetic particles, PSD: pseudo-single domain, USD: uniaxial single domain, CSD: cubic single domain, ISD: interacting single domain, UNISD: uniaxial noninteracting single domain. HH, DYZ, DW, and TS are the same to those in Fig. 3.

    图  6   典型样品的磁组分

    a-d:IRM获得曲线,e-h: 使用Batch UnMix方法[37]获得的组分模型, i-j: 一阶反转曲线(FORC)图。HH,DYZ,DW和TS与图3一致。

    Figure  6.   Magnetic components of typical samples

    a-d: IRM acquisition curve, e-h: component model based on Batch UnMix method[37], i-j: first-order reversal curve (FORC) diagram. HH, DYZ, DW, and TS are the same to those in Fig. 3.

    图  7   典型样品的磁学参数相关性分析

    Figure  7.   Correlation analysis of magnetic parameters of typical samples

    图  8   黄墩洼地(ZN钻孔)磁性参数与其他环境代用指标变化

    a: 磁化率(χlf), b: TOC, c: 粒度分离获得的组分2[52], d: SIRM/χlf, e: 中值粒径, f:粒度分离获得的组分1[52], g: S-300%。13 m处(左侧黑色虚线)为不同沉积环境分界线,对应4 201 aBP[52]。钻孔底部年龄(右侧黑色虚线)为9 712 aBP[52]。橙粉色和灰色分别对应河流作用下二元结构中的细颗粒和粗颗粒成分。

    Figure  8.   Changes in magnetic parameters and other environmental indicators in the Huangdun ancient depression (ZN borehole)

    a: Magnetic susceptibility (χlf), b: TOC, c: component 2 obtained from grain-size unmixing[52], d: SIRM/χlf, e: median grain-size, f: component 1 obtained from grain-size unmixin[52], g: S-300%. The “13 m” (left-black dashed line) represents the boundary between different sedimentary environments, corresponding to 4 201 aBP[52]. The age at the bottom of the borehole (right-black dashed line) is 9 712 aBP[52]. The orange pink and gray areas correspond to the fine and coarse particle components in the binary structure under fluvial deposition, respectively.

  • [1]

    Wang Y J, Su Y J. The geo‐pattern of course shifts of the Lower Yellow River[J]. Journal of Geographical Sciences, 2011, 21(6):1019-1036. doi: 10.1007/s11442-011-0897-7

    [2]

    Tan L C, Shen C C, Cai Y J, et al. Great flood in the middle-lower Yellow River reaches at 4000 a BP inferred from accurately-dated stalagmite records[J]. Science Bulletin, 2018, 63(4):206-208. doi: 10.1016/j.scib.2018.01.023

    [3]

    Chen Y Z, Syvitski J P M, Gao S, et al. Socio‐economic impacts on flooding: a 4000‐year history of the Yellow River, China[J]. AMBIO, 2012, 41(7):682-698. doi: 10.1007/s13280-012-0290-5

    [4]

    Kidder T R, Zhuang Y J. Anthropocene archaeology of the Yellow River, China, 5000-2000 BP[J]. The Holocene, 2015, 25(10):1627-1639. doi: 10.1177/0959683615594469

    [5]

    Storozum M J, Qin Z, Ren X L, et al. The collapse of the North Song dynasty and the AD1048-1128 Yellow River floods: geoarchaeological evidence from northern Henan Province, China[J]. The Holocene, 2018, 28(11):1759-1770. doi: 10.1177/0959683618788682

    [6] 张振克, 王苏民, 沈吉, 等. 黄河下游南四湖地区黄河河道变迁的湖泊沉积响应[J]. 湖泊科学, 1999, 11(3):231-236 doi: 10.18307/1999.0307

    ZHANG Zhenke, WANG Sumin, SHEN Ji, et al. River channel changes recorded by lake sediments in Nansihu Lake, the lower reaches of the Yellow River[J]. Journal of Lake Sciences, 1999, 11(3):231-236.] doi: 10.18307/1999.0307

    [7] 陈诗越, 侯战方, 陈影影, 等. 黄河下游地区湖泊沉积与环境[M]. 南京: 江苏凤凰科学技术出版社, 2017: 1-173

    CHEN Shiyue, HOU Zhanfang, CHEN Yingying, et al. Sedimentation and Environment of Lakes in the Lower Yellow River Region[M]. Nanjing: Jiangsu Phoenix Science and Technology Press, 2017: 1-173.]

    [8] 吴艳宏, 沈吉, 夏威岚, 等. 南四湖3000年来南北沉积差异[J]. 古地理学报, 1999, 1(2):78-83 doi: 10.3969/j.issn.1671-1505.1999.02.010

    WU Yanhong, SHEN Ji, XIA Weilan, et al. Sedimentary difference between north and south Nansihu Lake, Shandong province[J]. Journal of Palaeogeography, 1999, 1(2):78-83.] doi: 10.3969/j.issn.1671-1505.1999.02.010

    [9] 侯战方, 陈诗越, 孟静静, 等. 近1200 a来黄河下游梁山泊沉积记录的环境变迁[J]. 湖泊科学, 2018, 30(1):245-255 doi: 10.18307/2018.0124

    HOU Zhanfang, CHEN Shiyue, MENG Jingjing, et al. Environmental changes in the lower reaches of Yellow River area during the last 1200 years revealed by multiple proxies from the Lake Liangshanpo[J]. Journal of Lake Sciences, 2018, 30(1):245-255.] doi: 10.18307/2018.0124

    [10] 魏本杰, 侯战方, 陈诗越, 等. 黄河下游大野泽沉积物粒度特征及其对环境演化的指示[J]. 海洋地质与第四纪地质, 2019, 39(3):151-161

    WEI Benjie, HOU Zhanfang, CHEN Shiyue, et al. Grain-size characteristics of Dayeze lake sediments in the lower reach of Yellow River and their environmental implications[J]. Marine Geology & Quaternary Geology, 2019, 39(3):151-161.]

    [11]

    Chen Y Y, Chen S Y, Ma C M, et al. Palynological evidence of natural and anthropogenic impacts on aquatic environmental changes over the last 150 years in Dongping Lake, North China[J]. Quaternary International, 2014, 349:2-9. doi: 10.1016/j.quaint.2014.04.033

    [12] 伏梦璇, 魏本杰, 衣雅男, 等. 黄河下游大野泽流域的侵蚀变化与气候演变[J]. 海洋湖沼通报, 2021, 43(3):8-16

    FU Mengxuan, WEI Benjie, YI Yanan, et al. Erosional changes and climatic evolution of the lake Dayeze in the lower Yellow River[J]. Transactions of Oceanology and Limnology, 2021, 43(3):8-16.]

    [13]

    Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1):38-41. doi: 10.1038/ngeo2602

    [14]

    Zhang M, Xia J, Hong C. New challenges and opportunities for flood control in the Huai River: addressing a changing river‐lake relationship[J]. Bulletin of the Chinese Academy of Sciences, 2012, 26(1):40-47.

    [15]

    Yu L S, Liu H B, Wan F, et al. Geochemical records of the sediments and their significance in Dongping Lake Area, the lower reach of Yellow River, North China[J]. Journal of Groundwater Science and Engineering, 2021, 9(2):140-151.

    [16]

    Hu S Y, Deng C L, Appel E, et al. Environmental magnetic studies of lacustrine sediments[J]. Chinese Science Bulletin, 2002, 47(7):613-616. doi: 10.1360/02tb9141

    [17]

    Thompson R, Oldfield F. Environmental Magnetism[M]. Dordrecht: Springer, 1986: 1-220.

    [18]

    Maher B A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 154:23-84. doi: 10.1016/j.quascirev.2016.08.004

    [19]

    Liu Q S, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: principles and applications[J]. Reviews of Geophysics, 2012, 50(4):RG4002.

    [20]

    Orgeira M J, Egli R, Compagnucci R H. A quantitative model of magnetic enhancement in loessic soils[M]//Petrovský E, Ivers D, Harinarayana T, et al. The Earth's Magnetic Interior. Dordrecht: Springer, 2011: 361-397.

    [21]

    Liu Z F, Liu Q S, Torrent J, et al. Testing the magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China[J]. Global and Planetary Change, 2013, 110:368-378. doi: 10.1016/j.gloplacha.2013.04.013

    [22]

    Nie J S, Song Y G, King J W, et al. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during~ 4.5-2.6 Ma[J]. Quaternary Research, 2013, 79(3):465-470. doi: 10.1016/j.yqres.2013.01.002

    [23]

    Hatfield R G, Stoner J S, Reilly B T, et al. Grain size dependent magnetic discrimination of Iceland and South Greenland terrestrial sediments in the northern North Atlantic sediment record[J]. Earth and Planetary Science Letters, 2017, 474:474-489. doi: 10.1016/j.jpgl.2017.06.042

    [24]

    Liu Q S, Roberts A P, Torrent J, et al. What do the HIRM and S-ratio really measure in environmental magnetism?[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9):Q09011.

    [25]

    Roberts A P, Zhao X, Heslop D, et al. Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward[J]. Geoscience Letters, 2020, 7(1):8. doi: 10.1186/s40562-020-00157-5

    [26]

    Carter‐Stiglitz B, Moskowitz B, Solheid P, et al. Low‐temperature magnetic behavior of multidomain titanomagnetites: TM0, TM16, and TM35[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B12):B12S05.

    [27]

    Chang L, Heslop D, Roberts A P, et al. Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(1):3-14. doi: 10.1002/2015JB012485

    [28]

    Egli R. Analysis of the field dependence of remanent magnetization curves[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2):2081.

    [29]

    Jackson M, Solheid P. On the quantitative analysis and evaluation of magnetic hysteresis data[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4):Q04Z15.

    [30]

    Dunlop D J. Theory and application of the Day plot (M rs/M s versus H cr/H c) 1. Theoretical curves and tests using titanomagnetite data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3):2056.

    [31] 秦华峰, 刘青松, 潘永信. 一阶反转曲线(FORC)图的原理及应用实例[J]. 地球物理学报, 2008, 51(3):743-751 doi: 10.3321/j.issn:0001-5733.2008.03.015

    QIN Huafeng, LIU Qingsong, PAN Yongxin. The first-order reversal curve (FORC) diagram: theory and case study[J]. Chinese Journal of Geophysics, 2008, 51(3):743-751.] doi: 10.3321/j.issn:0001-5733.2008.03.015

    [32]

    Roberts A P, Heslop D, Zhao X, et al. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams[J]. Reviews of Geophysics, 2014, 52(4):557-602. doi: 10.1002/2014RG000462

    [33]

    Ilse S E, Groß F, Schütz G, et al. Understanding the interaction of soft and hard magnetic components in NdFeB with first-order reversal curves[J]. Physical Review B, 2021, 103(2):024425. doi: 10.1103/PhysRevB.103.024425

    [34]

    Heslop D, Roberts A P. A method for unmixing magnetic hysteresis loops[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B3):B03103.

    [35]

    Heslop D. Numerical strategies for magnetic mineral unmixing[J]. Earth-Science Reviews, 2015, 150:256-284. doi: 10.1016/j.earscirev.2015.07.007

    [36]

    Maxbauer D P, Feinberg J M, Fox D L. MAX UnMix: a web application for unmixing magnetic coercivity distributions[J]. Computers & Geosciences, 2016, 95:140-145.

    [37] 白帆, 常燎, 薛鹏飞, 等. 等温剩磁曲线分解方法及其批量处理工具BatchUnMix[J]. 地球物理学报, 2022, 65(12):4789-4801 doi: 10.6038/cjg2022Q0232

    BAI Fan, CHANG Liao, XUE Pengfei, et al. Decomposing isothermal remanent curves and development of a batch processing tool BatchUnMix[J]. Chinese Journal of Geophysics, 2022, 65(12):4789-4801.] doi: 10.6038/cjg2022Q0232

    [38]

    Harrison R J, Muraszko J, Heslop D, et al. An improved algorithm for unmixing first-order reversal curve diagrams using principal component analysis[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5):1595-1610. doi: 10.1029/2018GC007511

    [39]

    Roberts A P, Heslop D, Zhao X, et al. Unlocking information about fine magnetic particle assemblages from first-order reversal curve diagrams: recent advances[J]. Earth-Science Reviews, 2022, 227:103950. doi: 10.1016/j.earscirev.2022.103950

    [40]

    Zhang R, Necula C, Heslop D, et al. Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-red clay sequence[J]. Scientific Reports, 2016, 6(1):29515. doi: 10.1038/srep29515

    [41]

    Bellon U D, Trindade R I F, Williams W. Unmixing of magnetic hysteresis loops through a modified gamma‐Cauchy exponential model[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(8):e2023GC011048. doi: 10.1029/2023GC011048

    [42]

    Wu D, Zhou A F, Chen X M, et al. Hydrological and ecosystem response to abrupt changes in the Indian monsoon during the last glacial, as recorded by sediments from Xingyun Lake, Yunnan, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421:15-23. doi: 10.1016/j.palaeo.2015.01.005

    [43]

    Lisé-Pronovost A, St-Onge G, Gogorza C, et al. Rock-magnetic proxies of wind intensity and dust since 51, 200 cal BP from lacustrine sediments of Laguna Potrok Aike, southeastern Patagonia[J]. Earth and Planetary Science Letters, 2015, 411:72-86. doi: 10.1016/j.jpgl.2014.11.007

    [44]

    Zhong W, Wei Z Q, Shang S T, et al. A 15, 400-year record of environmental magnetic variations in sub-alpine lake sediments from the western Nanling Mountains in South China: implications for palaeoenvironmental changes[J]. Journal of Asian Earth Sciences, 2018, 154:82-92. doi: 10.1016/j.jseaes.2017.12.005

    [45]

    Fu H, Li M K, Bao K S, et al. Environment change recorded by lake sediment magnetism in the Songnen Plain, northeastern China[J]. Science of the Total Environment, 2024, 919:170938. doi: 10.1016/j.scitotenv.2024.170938

    [46] 张汉洁. 黄河下游山东段古湖泽的变迁[J]. 人民黄河, 1987(5):67-69

    ZHANG Hanjie. Process of lakes along the lower Yellow River in ancient time[J]. Yellow River, 1987(5):67-69.]

    [47] 喻宗仁, 窦素珍, 赵培才, 等. 山东东平湖的变迁与黄河改道的关系[J]. 古地理学报, 2004, 6(4):469-479 doi: 10.3969/j.issn.1671-1505.2004.04.009

    YU Zongren, DOU Suzhen, ZHAO Peicai, et al. Relationship between changes of Dongping Lake and shifting of the Yellow River in Shandong Province[J]. Journal of Palaeogeography, 2004, 6(4):469-479.] doi: 10.3969/j.issn.1671-1505.2004.04.009

    [48] 吕鸿燕, 祁德丽, 蒋雯, 等. 基于4G物联网卡的黄墩湖滞洪区远程视频监控系统应用探讨[J]. 治淮, 2019(3):28-29 doi: 10.3969/j.issn.1001-9243.2019.03.016

    LV Hongyan, QI Deli, JIANG Wen, et al. Discussion on the application of remote video monitoring system in Huangdun Lake flood detention area based on 4G IoT Card[J]. Harnessing the Huaihe River, 2019(3):28-29.] doi: 10.3969/j.issn.1001-9243.2019.03.016

    [49] 杨迈里, 王云飞. 骆马湖的成因与演变[J]. 湖泊科学, 1989, 1(1):37-44 doi: 10.18307/1989.0105

    YANG Maili, WANG Yunfei. The origin and evolution of Luoma Lake[J]. Scientia Limnologica Sinica, 1989, 1(1):37-44.] doi: 10.18307/1989.0105

    [50]

    Xue C T. Historical changes in the Yellow River delta, China[J]. Marine Geology, 1993, 113(3-4):321-330. doi: 10.1016/0025-3227(93)90025-Q

    [51] 江苏省地方志编纂委员会. 江苏江河湖泊志[M]. 南京: 江苏凤凰教育出版社, 2019

    Jiangsu Provincial Local Chronicles Compilation Committee. Records of Rivers and Lakes in Jiangsu[M]. Nanjing: Jiangsu Phoenix Education Publishing House, 2019.]

    [52]

    Zhang R, Xing L, Yu S Y, et al. Holocene overflow events of the lower Yellow River recorded in Huangdun ancient lake, northern Jiangsu Plain, China[J]. Journal of Quaternary Science, 2024, 39(3):443-456. doi: 10.1002/jqs.3599

    [53]

    Yu S Y, Colman S M, Li L X. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6):723-741. doi: 10.1007/s11004-015-9611-0

    [54]

    Roberts A P, Hu P X, Harrison R J, et al. Domain state diagnosis in rock magnetism: evaluation of potential alternatives to the day diagram[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6):5286-5314. doi: 10.1029/2018JB017049

    [55]

    Tauxe L, Bertram H N, Seberino C. Physical interpretation of hysteresis loops: micromagnetic modeling of fine particle magnetite[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10):1055.

    [56]

    Lascu I, Banerjee S K, Berquó T S. Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8):Q08Z19.

    [57]

    Egli R, Chen A P, Winklhofer M, et al. Detection of noninteracting single domain particles using first‐order reversal curve diagrams[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1):Q01Z11.

    [58]

    Spassov S, Heller F, Kretzschmar R, et al. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau)[J]. Physics of the Earth and Planetary Interiors, 2003, 140(4):255-275. doi: 10.1016/j.pepi.2003.09.003

    [59]

    Egli R. Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments[J]. Studia Geophysica et Geodaetica, 2004, 48(2):391-446. doi: 10.1023/B:SGEG.0000020839.45304.6d

    [60]

    Xue P F, Chang L, Pei Z W, et al. Discovery of giant magnetofossils within and outside of the Palaeocene-Eocene Thermal Maximum in the North Atlantic[J]. Earth and Planetary Science Letters, 2022, 584:117417. doi: 10.1016/j.jpgl.2022.117417

    [61]

    Hartstra R L. Grain-size dependence of initial susceptibility and saturation magnetization -related parameters of four natural magnetites in the PSD-MD range[J]. Geophysical Journal International, 1982, 71(2):477-495. doi: 10.1111/j.1365-246X.1982.tb05998.x

    [62]

    Franco V, Dodrill B. Magnetic Measurement Techniques for Materials Characterization[M]. Cham: Springer, 2021: 1-805.

    [63]

    Smirnov A V. Low-temperature magnetic properties of magnetite using first-order reversal curve analysis: implications for the pseudo-single-domain state[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(11):Q11011.

    [64]

    Peters C, Dekkers M J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(16-19):659-667. doi: 10.1016/S1474-7065(03)00120-7

    [65]

    Huang C C, Pang J L, Zha X C, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China[J]. Quaternary Science Reviews, 2011, 30(3-4):460-468. doi: 10.1016/j.quascirev.2010.12.007

    [66]

    Yu S Y, Li W J, Zhou L, et al. Human disturbances dominated the unprecedentedly high frequency of Yellow River flood over the last millennium[J]. Science Advances, 2023, 9(8):eadf8576. doi: 10.1126/sciadv.adf8576

    [67]

    Xie L Y, Daudjee Z, Liu C F, et al. Settlement relocation, urban construction, and social transformation in China's central plain, 2300-1500 B. C[J]. Asian Perspectives, 2020, 59(2):299-329. doi: 10.1353/asi.2020.0016

    [68]

    Chen Y Z. Flood dynamics of the lower Yellow River over the last 3000 years: characteristics and implications for geoarchaeology[J]. Quaternary International, 2019, 521:147-157. doi: 10.1016/j.quaint.2019.05.040

  • 期刊类型引用(1)

    1. 付广,范晨铄,梁木桂. 上覆不同储盖组合油源断裂输导油气时期厘定方法及其应用. 天然气地球科学. 2023(01): 15-22 . 百度学术

    其他类型引用(1)

图(8)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  5
  • PDF下载量:  34
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-06-02
  • 修回日期:  2024-07-24
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回