Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance
-
摘要: 菲律宾海地理位置特殊,蕴含着丰富的前沿地球科学问题,是研究地球多圈层相互作用的天然实验室。近年来,菲律宾海中部九州-帕劳海脊南段已成为研究热点,但对其表层沉积物物质来源和沉积环境了解尚存在不足。本文通过对采集于九州-帕劳海脊南段水深为3900~6100 m的69个站位样品开展沉积地球化学研究,旨在判别沉积物的物质来源和沉积环境空间变化特征。结果表明:研究区底质类型为远洋黏土和硅质软泥,不同类型沉积物的碎屑组分化学风化程度均较低,受分选和再循环的影响较小,是亚洲风尘物质和岛弧火山物质的混合产物,且以亚洲风尘物质为主;研究区不同类型站位的沉积环境基本一致,整体处于氧化沉积环境,底层水体氧化还原条件不是研究区沉积物中过渡金属(如Mo)元素富集的控制因素,铁锰(氢)氧化物是连接水体-沉积物中过渡金属元素源-汇过程的重要纽带。此外,底部氧化还原条件可能不是该海域硅藻席沉积保存的必要条件。Abstract: The Philippine Sea, with its special geographical location, is rich in frontier geoscience issues and is a natural laboratory for studying the Earth multi-layer interactions. In recent years, the southern section of the Kyushu-Palau Ridge in the central Philippine Sea has become a hot spot for geoscience research, but its surface sediment provenance and sedimentary environment are not yet well understood. The sediment geochemistry of 69 stations collected from the southern section of the Kyushu-Palau Ridge at water depths of 3900-6100m was studied to identify the spatial variability of sediment provenance and depositional environments. The results show that the sediment types in the study area are pelagic clay and siliceous ooze, and the clastic components of sediment are less chemically weathered, less affected by sorting and recycling, and are mixed products of Asian dust materials and island-arc volcanic materials, of which Asian dust materials are dominated; and the different types of sediment in the study area are basically in an oxidative depositional environment, and the bottom water redox conditions are not a controlling factor for the enrichment of transition metal (e.g., Mo) elements in the sediments, indicating that Fe-Mn (oxyhydr)oxides are an important link between the source-sink processes of transition metal elements at the water-sediment interface. In addition, bottom redox conditions may not be necessary for the preservation of diatom mats.
-
地震绕射波是地下构造细节和异常的反映,地下构造的不连续点会产生绕射波,如裂缝、断层、溶洞和地层尖灭等。在原始地震勘探数据中,既存在绕射波也存在反射波,反射波是地质背景的综合反映,绕射波则是地质细节的小构造的反映。相对反射波而言,绕射波的能量往往很弱,甚至难以识别,导致绕射信息常常被高能量的反射信息所覆盖,而绕射波信息是提高地震勘探分辨率的重要信息载体。在地震资料处理解释中,正确识别断层、尖灭和小尺寸散射体等地质不连续性是一个重要问题,绕射波包含有关产生绕射波的介质结构和组成的有价值信息。然而,在标准地震资料处理中,绕射波常被视为噪声而被抑制[1-3]。把绕射波从原始地震勘探记录中分离出来进行单独成像,可以加强小型地震异常体的成像,从而提高复杂断块的地震成像精度。
在过去的几十年,许多地球物理学者对地震绕射波分离方法做了相关研究。1988年Kanasewich和Phadke[4]提出了一种适用于共偏移距道集的绕射波走时曲线直接拾取绕射波的方法来分离绕射波。1992年Claerbout[5]首次提出了平面波预测滤波器的概念,并在信噪分离方面得到了很好的应用。Fomel[6]进一步完善了平面波预测滤波器,并提出了平面预测滤波器的残差可以作为绕射波的近似。Nowak等[7]根据反射波和绕射波同相轴的几何差异,采用加权双曲Radon滤波器分离地震绕射波。Berkovitch等[8]利用绕射波多次聚焦叠加剖面将绕射波聚焦到绕射点位置,同时将反射波反聚焦到整个道集记录,从而分离绕射波。Koren和Ravve[9]提出了方位相关反射波属性,通过构建加权叠加滤波器将绕射波和反射波分离。Klokov等[10]根据角度域共成像点道集中反射波和绕射波的差异,首先压制去除反射顶点附近反射能量,然后利用混合Radon变换去除剩余反射波能量,进而分离出绕射波。Moser和Howard[11]提出基于深度域的反射聚焦,从叠前数据中过滤反射进而对绕射波分离成像的方法。Decker等[12]使用人工模拟数据和从皮森盆地获得的野外实际数据进行绕射波分离,评估解决绕射特征的多种方法,证明平面波预测滤波器方法能使图像保存更多绕射能量和较少的迁移伪影,但不足是无法消除斜率不连续的反射变量。上述绕射波分离算法主要是利用了绕射波和反射波在不同地震数据道集中的差异,通过数学变换或者信号预测的方法将绕射波识别和分离出来。在国内研究方面,赵娟娟等[13]利用F-K滤波方法分离成像绕射波,通过F-K域斜率滤波去除反射波从而分离出绕射波信息。马永生[14]从油藏中具有代表性的地质模型出发,分析VSP中绕射波的基本特点,理论上总结了绕射波运动学的部分认识规律。黄建平等[15]着重介绍了平面波预测滤波器及其在叠前域、叠后域分离并成像绕射波的方法原理,探讨了绕射波分离成像方法的应用前景和改进方向。朱生旺[16]提出一种局部倾角滤波和预测反演联合起来分离绕射波的方法。蒋波等[17]提出一种基于反射波层拉平的绕射波分离与成像方法用于碳酸盐岩缝洞储集体地质目标,提高对溶洞、裂缝等特殊异常体的刻画精度。李正伟等[18]根据倾角域共成像点道集中菲涅耳带变化特点,通过倾角-偏移距道集中精确切除菲涅耳带的方法来分离绕射波。本文在平面波分解绕射波分离[6]基础上,分析了绕射波与反射波信号特征的差异,深入研究了平面波预测的绕射波分离方法的影响因素,并探讨了噪声和平面波预测滤波器平滑参数对地震绕射波分离结果的影响,为在实际地震数据处理中应用平面波分解方法进行绕射波分离提供了理论指导。
1. 平面波预测绕射波分离
地震记录既含有反射波同相轴也含有绕射波同相轴,在点震源激发时,反射波和绕射波波形在炮记录中都是双曲线,不易于分离反射波和绕射波。在平面波震源激发时,来自反射界面的反射波是平面波,而来自绕射体的绕射波是双曲线。因此,在平面波震源条件下反射波和绕射波具有明显的几何差异,更有利于绕射波分离。在实际地震勘探中大都是点源激发,反射波和绕射波的同相轴不易区分,但我们根据爆炸反射面理论将共偏移距剖面近似为平面波震源获得的地震记录,这样绕射波和反射波有较好的几何差异,根据其几何差异进行绕射波分离。
平面波预测滤波器利用未知的局部倾角构造最优非稳态预测误差滤波器,根据相邻地震道的数据,在局部倾角平滑变化约束下,使预测误差最小化以此预测目标道数据。通过最优化方法不断迭代可获得局部倾角场,倾角场能够反映反射波场几何信息。
局部平面波的微分方程表示为[6]:
$$\frac{{\partial P}}{{\partial {{x}}}} + \sigma \frac{{\partial P}}{{\partial t}} = 0$$ (1) 其中,
$P\left( {t,x} \right)$ 是波场,$x$ 、$t$ 分别是炮检距和旅行时,$\sigma $ 是局部倾角,是$x$ 和$t$ 的函数,局部倾角是旅行时对炮检距的导数。Fomel给出了Z变换域平面波预测的形式[6]:
$${\hat P_{x + 1}}\left( {{Z_t}} \right) = {\hat P_x}\left( {{Z_t}} \right)\frac{{B\left( {{Z_t}} \right)}}{{B\left( {{\rm{1/}}{Z_t}} \right)}}$$ (2) 式中,
${{\hat P}_x}\left( {{Z_t}} \right)$ 是相应记录道的Z变换形式,$B\left( {{Z_t}} \right){\rm{/}}B\left( {{\rm{1/}}{Z_t}} \right)$ 等价于全通数字滤波器。用Taylor级数展开拟合得到${B\left( {{Z_t}} \right)}$ 五阶中心滤波器:$$ \begin{split} {B_5}\left( {{Z_t}} \right) =& \frac{{(1 - \sigma )(2 - \sigma )(3 - \sigma )(4 - \sigma )}}{{1\;680}}Z_t^{ - 2} + \\ &{\frac{{(4 - \sigma )(2 - \sigma )(3 - \sigma )(4 + \sigma )}}{{420}}Z_t^{ - 1} + }\\ &{\frac{{(4 - \sigma )(3 - \sigma )(3 + \sigma )(4 + \sigma )}}{{280}} + }\\ &{\frac{{(4 - \sigma )(2 + \sigma )(3 + \sigma )(4 + \sigma )}}{{420}}{Z_t} + }\\ &{\frac{{(1 + \sigma )(2 + \sigma )(3 + \sigma )(4 + \sigma )}}{{1\;680}}Z_t^2} \end{split} $$ (3) 利用平面波预测滤波器预测分离绕射波的过程中,关键一步是反射波同相轴局部倾角的估计。如果局部倾角已知的情况下,可以用
$C\left( \sigma \right)$ 表示地震数据与二维滤波器的褶积算子。因此,在最小平方意义下,可通过求解如下最小二乘目标函数估计局部倾角:$$C\left( \sigma \right)d \approx 0$$ (4) 其中,
$d$ 为已知的地震数据。优化问题(3)可以利用高斯—牛顿线性化迭代的方法求解:$$C'\left( {{\sigma _0}} \right)\Delta \sigma d + C\left( {{\sigma _0}} \right)d \approx 0$$ (5) 式中,
$\Delta \sigma $ 为倾角增量,${{\sigma _0}}$ 为初始倾角,$C\left( {{\sigma _0}} \right)$ 为对应初始倾角${{\sigma _0}}$ 估计的褶积算子。$C'\left( {{\sigma _0}} \right)$ 为$C\left( {{\sigma _0}} \right)$ 的导数值。为了保证倾角场稳定可靠,在反演求解过程中引入正则化约束项,控制倾角场沿着空间和时间两个方向平滑。由于平面预测是针对平面波形的预测,而绕射波难于满足其预测方程,因此一旦估计出了倾角场,将倾角参数代入预测方程(4),预测的残差就是绕射波的近似。图1给出了平面波预测绕射波分离算法的流程图。在平面波预测绕射波分离方法中,倾角场估计的正则化平滑参数是一个重要的参数,它控制着倾角的空间平滑性,从而约束着预测的范围。同时,实际地震勘探中噪声的存在也会影响倾角的估计和绕射波的分离,因此需要对噪声和正则化参数进行深入的分析讨论。
2. 噪音水平和光滑半径影响因素
以地震勘探中被广泛采用的Sigsbee 2A模型为例对绕射波分离算法的影响因素进行分析。在绕射波分离的过程中,倾角场预测结果对绕射波分解效果影响较大,而噪声和平面波预测平滑参数均对倾角场的估计产生影响。图2-4中,在目标数据中增添了不同方差的均值为0的正态分布随机噪音,给出了不同噪声水平下的倾角场估计结果和绕射波分离结果。随着噪音水平的增大,原始数据共偏移距地震数据变得复杂,估计的倾角场准确性降低,尤其在低信噪比情况下倾角场估计的误差变大,但是高信噪情况下倾角场估计的结果较好,尽管在原始数据中可以观察到噪声,但估计的倾角几乎和没有噪声数据估计的倾角一致,其主要原因是正则化平滑技术约束了倾角场的平滑性,提高估计的稳定性和可靠性。在高信噪比情况下,尽管倾角场估计比较准确,但是绕射波的分离仍然受到了噪声影响,其原因为在平面波预测中我们只把可预测的平面波提取出来,而噪声也被留在了残差中,而残差正是绕射波的估计,因此在分离的绕射波中含有噪声。噪声水平越强,分离的绕射波效果越差,在低信噪比条件下,倾角场的估计也变差,绕射波分离结果几乎被淹没在噪声和假象下,无法得到较好的绕射波信息。由于噪声会降低倾角场估计的精度,同时噪声也会影响分离算法的效果,因此,在利用平面波预测法进行绕射波分离时,必须要先压制随机噪音,从而提高分离结果的精度。
倾角估计问题属于反问题范畴,存在多解性和不适定性,为了解决这一问题,需要采用正则化技术对估计的局部倾角场进行约束。在反问题正则化中光滑半径参数控制着正则化程度,下面讨论在倾角估计过程中,沿着水平方向平滑和沿垂直方向平滑半径大小对倾角预测和绕射波分离结果的影响。图5显示了不同平滑半径下倾角估计和绕射波分离的结果。随着水平或垂直方向光滑半径的不断增大,倾角估计值的范围越来越小,倾角估计的结果在水平或垂直方向上越来越平滑,随着光滑半径的进一步增大,理论上当光滑半径趋于无穷大时,倾角估计结果也会趋于与坐标轴平行。从对应的绕射波分离结果来看,随着光滑半径的增大,倾角估计值变小,绕射波分离结果显得越来越干净,信噪比明显提高。具体原因有两方面:一是大的光滑半径将部分噪音平滑掉了,减少了噪音对分离结果的干扰;二是大的光滑半径将小的绕射波忽略了,这样大尺度的绕射波就显得很干净。光滑半径太小会使倾角估计的范围大于理论值,使绕射波分离结果中出现许多全波场中没有的小尺度绕射波,使得绕射波分离结果信噪比降低,利用这些小尺度绕射波偏移成像后可能出现许多小尺度地质构造体假象,即造成偏移噪音和偏移假象[19]。
图 5 不同平滑半径对倾角估计及绕射分离结果的影响a-b是光滑半径为3的结果,c-d是光滑半径为10的结果,e-f是光滑半径为50的结果。Figure 5. Influence of different smoothing radius on dip angle estimation and diffraction separation results.a-b is the result of smooth radius of 3, c-d is the result of smooth radius of 10, e-f is the result of smooth radius of 50.因此,在应用平面波预测进行倾角估计和绕射波分离时应选择合适的光滑半径。光滑半径较小时,算法对小型地质体的绕射波识别更敏感。光滑半径较大时,小尺度绕射波没有很好地分离出来,不利于小尺度地质体的识别与成像。但较大的光滑半径对大型的绕射波聚焦顶点的识别非常清晰。在处理实际数据时,应根据具体的研究目的对平滑参数做适当的调整。例如,识别的目标是地下小尺度构造体、小型缝洞时,可以选择较小的光滑半径;若研究的目标是大型裂缝、断层、不整合面以及地层缺失时,应当选择较大的光滑半径。
3. 地震数据绕射波分离算例
为了说明平面波预测地震绕射波分离的效果,我们将其应用于一个模拟数据和两个实际数据绕射波分离中。图6a是一个模拟的共偏移距道集,可以清楚地看到绕射波和反射波互相干扰。图6b是预测出的倾角场,这里的光滑半径为5。图6c是经过分离后的结果,可以看出分离的绕射波中反射波同相轴几乎不存在,绕射波信息明显,该算例表明平面波预测滤波器可以很好地预测出反射波信息并对其进行压制。
然后,我们将其应用于实际海洋地震勘探的共偏移距叠前道集(图7a),可以发现该数据绕射波非常发育,从叠前共偏移距道集上可以清楚看到一些绕射波,尤其是对于3.5 s处复杂断块引起的绕射波非常清楚,我们首先估计其局部倾角场(图7b),光滑半径确定为5。在反射波发育的地方,倾角场比较平滑且数值较小,而在绕射波发育的地方倾角较大,从分离的绕射波结果(图7c)可以看出平面波预测方法可以很好地分离绕射波,这些被分离出的绕射波可以很好地进行断块构造的成像[20]及储层表征[21]。
最后,我们对叠后的实际地震数据进行绕射波分离(图8a),由于叠加会破坏一些绕射波的信息,因此在叠后的剖面上绕射波能量较弱,但是叠后的剖面信噪比较高,对估计倾角场比较有利。图8b为估计的局部倾角场信息,由于叠加对绕射波的压制,同时因为该数据剖面上的绕射波分布散乱,为了得到正确的倾角,此处的横向光滑半径为50,纵向光滑半径为20,图8c显示了叠后地震数据绕射波分离后的结果,可以发现绕射波很好地被分离出来。模拟和实际数据表明平面波预测方法可以有效分离绕射波。
4. 结论
平面波预测滤波器在反射波同相轴光滑连续的条件下,可以有效地估计地震数据的局部倾角场,进而分离出绕射波,该方法对隐藏在强反射能量下的小型绕射波信息起到很好的分离效果,为后期绕射波单独成像提供绕射波信息。通过对噪声和平滑参数对地震绕射波分离结果的影响分析,发现噪声水平严重影响绕射波分离效果,噪音过大分离结果会不准确;平面波预测滤波器光滑半径偏小会引入噪音和假象,光滑半径偏大会导致绕射波分离不彻底,小断块地震绕射波响应难以分离。在绕射波分离算法中,振幅保真性也是一个重要问题,因此提高算法的抗噪性和保真性是今后研究的重要方向。
-
图 3 源区风化强度和沉积分选再循环评价图
A:A-CN-K图解[24],B:Th/Sc-Zr/Sc双变量图[29],C:La-Th-Sc三角图解[30],D:La/Th-Hf双变量图[31] 。底图均据引用文献重新绘制。
Figure 3. Evaluation of the weathering intensity in the source regions and the sedimentary sorting and recycling
A: A-CN-K ternary diagram [24], B: Th/Sc-Zr/Sc diagram [29], C: La-Th-Sc ternary diagram [30], D: La/Th-Hf diagram [31].
图 6 研究区底层水体氧化还原环境识别图
A:V/Cr-Th/U协变图,B:V/(V + Ni)-Th/U协变图,C:Ni/Co-Th/U协变图,D: EF(Mo)-Th/U协变图。其中V/Cr、Th/U和Ni/Co的含氧量临界值参考文献[49-50]。
Figure 6. Diagrams of redox environment of bottom water
A: V/Cr-Th/U; B: V/(V + Ni)-Th/U; C: Ni/Co-Th/U; D: EF(Mo)-Th/U. Critical oxygen content of V/Cr, Th/U, and Ni/Co ratios are from references[49-50].
表 1 研究区表层沉积物常量元素氧化物含量和微量元素含量
Table 1 Contents of major and trace elements of the surface sediments of this study
组分 最小值 最大值 平均值 上地壳[21] 常量
元素
/%Al2O3 2.46 17.4 13.8 15.4 CaO 0.45 2.51 1.52 3.59 MgO 0.21 4.11 3.16 2.48 K2O 0.43 2.87 2.16 2.8 Na2O 3.16 16.2 5.81 3.27 TiO2 0.04 0.84 0.64 0.64 P2O5 0.04 0.56 0.26 0.15 MnO 0.03 6.62 1.14 0.1 TFe2O3 0.87 12.4 7.99 5.04 微量
元素
/(μg/g)Cu 28.2 842 268 28 Pb 5.1 299 57.7 17 Zn 18.1 292 138 67 Cr 12.3 105 69.2 92 Ni 11.5 1160 181 47 Co 4.08 384 75.3 17.3 Cd 0.03 3.31 0.42 0.09 Li 8.35 73.6 50 21 Rb 12.8 106 72 84 Cs 0.78 9.5 6.62 4.9 Mo 0.63 70.9 18.7 1.1 Sr 48.2 709 196 320 Ba 244 2280 1106 624 V 19.1 251 164 97 Sc 2.51 25.4 19.7 14 Zr 9.9 223 121 193 Hf 0.6 4.53 3.11 5.3 U 0.39 3.13 1.84 2.7 Th 1.19 16.3 9 10.5 La 5.81 77.4 39.0 31.0 -
[1] 宋维宇, 刘娅楠, 胡邦琦, 等. 基于DEM数据的菲律宾海典型区地貌类型划分[J]. 海洋地质与第四纪地质, 2021, 41(1):192-198 SONG Weiyu, LIU Yanan, HU Bangqi, et al. Landform classification for the Philippine Sea based on DEM data [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 192-198.
[2] 张国伟, 李三忠. 西太平洋-北印度洋及其洋陆过渡带: 古今演变与论争[J]. 海洋地质与第四纪地质, 2017, 37(4):1-17 ZHANG Guowei, LI Sanzhong. West Pacific and North Indian Oceans and their ocean-continent connection zones: Evolution and debates [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17.
[3] 李春峰, 周多, 李刚, 等. 西太平洋地球动力学问题与未来大洋钻探目标[J]. 地球科学, 2021, 46(3):759-769 LI Chunfeng, ZHOU Duo, LI Gang, et al. Geodynamic problems in the Western Pacific and future scientific drill targets [J]. Earth Science, 2021, 46(3): 759-769.
[4] 杜学鑫, 祝文君, 牟明杰, 等. 菲律宾海板块俯冲与岛弧演化的钻探靶区研究[J]. 海洋地质与第四纪地质, 2022, 42(5):199-210 DU Xuexin, ZHU Wenjun, MOU Mingjie, et al. Study on drilling target area of subduction of Philippine Sea plate and island arc evolution [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 199-210.
[5] 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219 WAN Shiming, XU Zhaokai. Research progress on eolian dust records in the west Pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.
[6] Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle [J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211
[7] Xu Z K, Li T G, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. doi: 10.1002/2015GC005929
[8] Jiang F Q, Zhou Y, Nan Q Y, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes [J]. Journal of Geophysical Research:Oceans, 2016, 121(9): 6911-6928. doi: 10.1002/2016JC012000
[9] Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116
[10] 明洁, 李安春, 孟庆勇, 等. 东菲律宾海帕里西维拉海盆第四纪黏土矿物组合特征及物源分析[J]. 海洋地质与第四纪地质, 2012, 32(4):139-148 MING Jie, LI Anchun, MENG Qingyong, et al. Quaternary assemblage characteristic and provenance of clay minerals in the Parecevela Basin of the East Philippine Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148.
[11] 靳宁, 李安春, 刘海志, 等. 帕里西维拉海盆西北部表层沉积物中黏土矿物的分布特征及物源分析[J]. 海洋与湖沼, 2007, 38(6):504-511 JIN Ning, LI Anchun, LIU Haizhi, et al. Clay minerals in surface sediment of the northwest Parece Vela Basin: distribution and provenance [J]. Oceanologia et Limnologia Sinica, 2007, 38(6): 504-511.
[12] 黄杰, 万世明, 张国良, 等. 海底地形特征对东菲律宾海表层黏土矿物分布的影响[J]. 海洋地质与第四纪地质, 2017, 37(1):77-85 HUANG Jie, WAN Shiming, ZHANG Guoliang, et al. Impact of seafloor topography on distribution of clay minerals in the East Philippines Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 77-85.
[13] Qin X W, Luo W D, Li P F, et al. Topographic and geomorphological features and tectogenesis of the southern section of the Kyushu-Palau Ridge (KPR) and its adjacent areas [J]. China Geology, 2021, 4(4): 571-584.
[14] Shang L N, Li P F, Du R L, et al. Structural characteristics of the KPR-CBR triple-junction inferred from gravity and magnetic interpretations, Philippine Sea Plate [J]. China Geology, 2021, 4(4): 541-552. doi: 10.31035/cg2021089
[15] 侯方辉, 秦轲, 陆凯, 等. 九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始: 多道反射地震综合研究[J]. 海洋地质与第四纪地质, 2022, 42(5):187-198 HOU Fanghui, QIN Ke, LU Kai, et al. Tectono-sedimentary characteristics and subduction initiation in the middle Kyushu-Palau Ridge and adjacent basins: A comprehensive study of multichannel seismic reflection profiles [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 187-198.
[16] 黄威, 胡邦琦, 宋维宇, 等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5):137-148 doi: 10.16562/j.cnki.0256-1492.2022052401 HUANG Wei, HU Bangqi, SONG Weiyu, et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401
[17] 黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1):199-209 HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209.
[18] 宋维宇, 李超, 孟祥君, 等. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义[J]. 海洋地质与第四纪地质, 2022, 42(5):149-157 doi: 10.16562/j.cnki.0256-1492.2022061701 SONG Weiyu, LI Chao, MENG Xiangjun, et al. Geochemical characteristics and resource significance of polymetallic nodules and cobalt-rich crusts in the southern Kyushu-Palau ridge [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 149-157. doi: 10.16562/j.cnki.0256-1492.2022061701
[19] Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8
[20] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504
[21] Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Elsevier: Oxford, 2014: 1-51.
[22] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
[23] McLennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303. doi: 10.1086/648222
[24] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3
[25] Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.
[26] Sun J M, Zhu X K. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: Implications for provenance change [J]. Earth and Planetary Science Letters, 2010, 290(3-4): 438-447. doi: 10.1016/j.jpgl.2010.01.001
[27] Chen B, Yang X P, Jiang Q D, et al. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin Sandy Land, northern China: Implications for weathering, recycling, and provenance [J]. CATENA, 2022, 208: 105769. doi: 10.1016/j.catena.2021.105769
[28] Zhang Q, Liu Q S, Roberts A P, et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asian interior? [J]. Geology, 2020, 48(1): 77-81. doi: 10.1130/G46862.1
[29] McLennan S M, Hemming S R, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics [J]. Special Papers-Geological Society of America, 1993, 284: 21-40.
[30] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292
[31] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones [J]. Journal of the Geological Society, 1987, 144(4): 531-542. doi: 10.1144/gsjgs.144.4.0531
[32] Shao L, Li X H, Wei G J, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea [J]. Science in China Series D:Earth Sciences, 2001, 44(10): 919-925. doi: 10.1007/BF02907084
[33] Wei G J, Liu Y, Ma J L, et al. Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing [J]. Marine Geology, 2012, 319-322: 21-34. doi: 10.1016/j.margeo.2012.05.007
[34] Olivarez A M, Owen R M, Rea D K. Geochemistry of eolian dust in Pacific pelagic sediments: Implications for paleoclimatic interpretations [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2147-2158. doi: 10.1016/0016-7037(91)90093-K
[35] 丁雪, 胡邦琦, 徐方建, 等. 晚上新世以来菲律宾海盆XT4孔黏土矿物特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(1):42-51 doi: 10.16562/j.cnki.0256-1492.2020111301 DING Xue, HU Bangqi, XU Fangjian, et al. Evolution of clay minerals assemblages since Late Pliocene and its paleoenvironmental implications: Evidence from Core XT4 of the Philippine Sea Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 42-51. doi: 10.16562/j.cnki.0256-1492.2020111301
[36] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008, 53(6):923-931 doi: 10.3321/j.issn:0023-074X.2008.06.013 XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Geochemical character and material source of sediments in the eastern Philippine Sea [J]. Chinese Science Bulletin, 2008, 53(6): 923-931. doi: 10.3321/j.issn:0023-074X.2008.06.013
[37] 褚征, 胡宁静, 刘季花, 等. 西菲律宾海表层沉积物稀土元素地球化学特征及物源指示意义[J]. 海洋地质与第四纪地质, 2016, 36(5):53-62 doi: 10.16562/j.cnki.0256-1492.2016.05.006 CHU Zheng, HU Ningjing, LIU Jihua, et al. Rare earth elements in sediments of west Philippine Sea and their implications for sediment provenance [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 53-62. doi: 10.16562/j.cnki.0256-1492.2016.05.006
[38] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(19): 11492-11504. doi: 10.1002/2014JD022025
[39] Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid- Pleistocene inferred from radiogenic Sr and Nd isotopes [J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011
[40] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
[41] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography [J]. Chemical Geology, 2012, 324-325: 46-58. doi: 10.1016/j.chemgeo.2011.09.009
[42] Bennett W W, Canfield D E. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments [J]. Earth-Science Reviews, 2020, 204: 103175. doi: 10.1016/j.earscirev.2020.103175
[43] Algeo T J, Li C. Redox classification and calibration of redox thresholds in sedimentary systems [J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26. doi: 10.1016/j.gca.2020.01.055
[44] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001
[45] Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032. doi: 10.1016/j.gca.2005.05.015
[46] Krishnaswami S. Authigenic transition elements in Pacific pelagic clays [J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 425-434. doi: 10.1016/0016-7037(76)90007-7
[47] Piper D Z. The metal oxide fraction of pelagic sediment in the equatorial North Pacific Ocean: A source of metals in ferromanganese nodules [J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2127-2145. doi: 10.1016/0016-7037(88)90193-7
[48] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. [J]. Chemical Geology, 1992, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y
[49] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X
[50] Wignall P B, Twitchett R J. Oceanic anoxia and the end permian mass extinction [J]. Science, 1996, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155
[51] Rimmer S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA) [J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029
[52] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
[53] Luo M, Algeo T J, Tong H P, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 70-82. doi: 10.1016/j.dsr2.2017.01.006
-
期刊类型引用(2)
1. 许胜利,张雨,孙玉红,许靖康,滑彩虹,李灿灿. 射线原理下中-深层裂缝地震可预测性分析及应用. 石油工业技术监督. 2024(11): 1-5 . 百度学术
2. 栾锡武,杨佳佳. 地震绕射波波场分离与成像方法综述. 石油物探. 2022(05): 761-770 . 百度学术
其他类型引用(0)