Physical and chemical characteristics of surface sand in different types of dunes in Qingtu Lake, Gansu, NW China, and their environmental implications
-
摘要:
沙丘表层沉积物的理化特征在揭示风沙的来源、沉积过程、风化作用等方面具有重要作用。本研究采用野外实地采样和实验室分析方法分析了甘肃青土湖地区不同类型沙丘表层沉积物的粒度和地球化学特征。结果表明:(1)青土湖地区沙丘表层沉积物以细砂为优势粒级,平均含量达72.08%,其次为极细砂,黏粒成分很少。频率分布曲线为单峰分布,概率累积曲线表现为三段式,反映出沉积环境较为稳定。(2)研究区沙丘表层沉积物常量元素以SiO2为主,平均含量为76.40%,其次为Al2O3和CaO,平均含量分别为5.05%、3.74%。微量元素以Cr、Mn、Co、Sr、Ba、Ti、Ce和P为主,平均含量均>100 mg/L。(3)Y、Zr和Y/Zr、Rb/Zr双变量图、A-CNK-FM图解表明巴丹吉林沙漠和腾格里沙漠为其沙源。风沙搬运过程中的磨蚀、风选作用是研究区富集Fe、Mg元素的主要原因。此外,下伏湖相沉积物就地起砂,石羊河冲积物也为其提供了部分沙物质。(4)A-CN-K和A-CNK-FM三角模式图表明研究区风化程度较弱,处于初期脱Na、Ca阶段。在沙丘固定过程中成土作用增强但淋溶作用减小,这是由于植被的影响导致半固定、固定沙丘Na、Ca含量较高。
Abstract:The physical and chemical imprints of surface sediments bear key information of the origination, sedimentation, and weathering of sand. Field sampling and laboratory analysis were conducted to investigate the grain size and geochemical characteristics of surface sediment with various types of sand in the Qingtu Lake, Gansu, NW China. Results show that the surface sediment is dominated by fine sand, taking an average content of 72.08%, followed by very fine sand and a minimal amount of clay. The frequency distribution curve exhibits a unimodal distribution, while the cumulative probability curve shows a three-portion pattern, indicating a relatively stable sediment environment. The predominant constant elements are mainly SiO2, occupying 76.40% in average and then Al2O3 and CaO, for 5.05% and 3.74%, respectively. The trace elements consist mainly of Cr, Mn, Co, Sr, Ba, Ti, Ce, and P, in average concentration of over 100 mg/L. The two-variable chart (Y verse Zr, Y/Zr verse Rb/Zr) and the A-CNK-FM graph demonstrate that the Badain Jaran Desert and Tengger Desert were key sand sources for the study area. The abrasion and wind erosion in sand transportation are the main factors affecting the distribution of Fe and Mg elements. In addition, lacustrine and alluvial deposits of the Shiyang River also provided a part of the sand source. The ternary diagrams A-CN-K and A-CNK-FM indicate that the study area experienced weaker wind levels during the early phases of de-Na and de-Ca processes. However, in the progress of sand fixation, pedogenesis was enhanced while eluviation was reduced due to the influence of vegetation, which caused semi-fixed and fixed sand with higher Na and Ca contents.
-
Keywords:
- sand dune /
- grain size /
- geochemical elements /
- wind deposit /
- weathering /
- Qingtu Lake
-
-
图 1 研究区概况图(A)及采样点分布(B)
BDJL:巴丹吉林沙漠南缘样品[17],TGL:腾格里沙漠北缘样品[17]。a:固定沙丘,b:半固定沙丘,c:流动沙丘。
Figure 1. Overview of the research area (A) and the distribution of the sampling points (B)
BDJL: the southern edge of the Badain Jaran Desert [17]; TGL: the northern edge of Tengger Desert [17]. a: Fixed dune; b: semifixed dune; c: climbing dune.
图 8 研究区与潜在沙源微量元素双变量图
a:Y、Zr双变量图, b:Y/Zr、Rb/Zr双变量图。 BDJL:巴丹吉林沙漠南缘样品[17], TGL:腾格里沙漠北缘样品[17]。
Figure 8. Bivariate correlations of trace elements and potential sand origination
a: Y vs Zr,b:Y/Zr vs Rb/Zr. BDJL: the southern edge of the Badain Jaran Desert [17],TGL: the northern edge of Tengger Desert[17].
图 9 A-CN-K和A-CNK-FM图解
Ka:高岭石,Gi:水铝矿,Chl:绿泥石,IL:伊利石,PI:斜长石,Sm:蒙脱石,Ks:钾长石,Fel:长石,Mu:白云母,Bi:黑云母,BDJL:巴丹吉林沙漠南缘样品[17],TGL:腾格里沙漠北缘样品[17],UCC:平均上陆壳[27],PAAS:陆源页岩[28]。
Figure 9. A-CN-K and A-CNK-FM ternary diagrams
Ka: kaolinite, Gi: gibbsite, Chl: chlorite, IL: illite, PI: plagioclase, Sm: smectite, Ks: K-feldspar, Fel: feldspar, Mu: white mica, Bi: biotite, BDJL: Samples from the southern edge of the Badain Jaran Desert [17], TGL: Samples from the northern edge of Tengger Desert [17], UCC: average continental crust [27], PAAS: terrigenous shale [28].
表 1 不同类型沙丘的取样信息
Table 1 Information of sampling from different types of dunes
沙丘类型 位置 海拔/m 高度/m 底面直径/m 取样部位及编号 样品数/个 LDSQ1 39°8′1″N、103°38′27″E 1260 8 30 迎风坡:1-1、1-2、1-3、1-4、1-5
丘顶:1-6
背风坡:1-7、1-8、1-9、1-1010 LDSQ2 39°8′2″N、103°38′25″E 1265 6 20 迎风坡 :2-1、2-2
丘顶:2-3
背风坡:2-4、2-55 BGDSQ 39°8′5″N、103°38′14″E 1258.1 2 5 迎风坡:3-1、3-2
丘顶:3-33 GDSQ 39°8′4″N、103°38′12″E 1257.2 4.6 6 迎风坡:4-1、4-2
丘顶:4-3
背风坡:4-4、4-55 表 2 不同类型沙丘表层沉积物粒度组成及粒度参数
Table 2 Composition and parameters of grain size in surface sediments from different types of dunes
沙丘类型 各粒级含量/% Mz/Φ σ/Φ Sk Kg 黏土 粉砂 极细砂 细砂 中砂 粗砂 LDSQ 0.03 0.78 10.56 80.59 7.79 0.25 2.46 0.43 0.02 0.97 BGDSQ 0.90 5.83 27.47 54.62 8.79 2.36 2.69 0.91 0.21 1.77 GDSQ 0.93 7.70 29.75 57.04 4.42 0.15 2.83 0.83 0.24 1.67 平均值 0.34 2.94 16.94 72.08 7.19 0.51 2.57 0.58 0.09 1.23 表 3 不同类型沙丘表层沉积物常量元素组成
Table 3 Major elements in surface sediments of different types of dunes
% 沙丘类型 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O LDSQ 78.24 4.27 2.21 1.82 2.78 2.12 1.86 BGDSQ 74.12 6.05 2.11 5.91 2.71 2.21 1.91 GDSQ 74.08 6.02 2.10 6.28 2.88 2.24 2.26 平均值 76.40 5.05 2.16 3.74 2.80 2.17 1.98 表 4 不同类型沙丘表层沉积物微量元素组成
Table 4 Trace elements in surface sediments of different types of dunes
mg/L 沙丘类型 La V Cr Mn Co Ni Cu Zn As Sr LDSQ 9.60 65.70 190.10 262.20 114.80 29.20 10.60 31.60 0.40 171.80 BGDSQ 9.67 96.67 102.00 270.33 84.00 11.67 10.67 32.00 0.67 407.33 GDSQ 9.40 102.20 119.00 266.80 80.80 6.60 10.80 33.40 0.80 457.80 平均值 9.56 81.00 155.67 264.83 100.22 20.00 10.67 32.17 0.53 290.50 沙丘类型 Pb Ba Ti Y Zr Rb Nb Ga Ce P LDSQ 14.90 222.20 1446.60 11.10 89.50 64.50 8.10 13.40 104.20 334.20 BGDSQ 14.00 310.00 1368.67 12.00 95.67 67.33 8.00 13.33 95.33 825.67 GDSQ 14.20 318.60 1405.40 12.40 100.80 71.40 8.60 13.80 98.00 834.40 平均值 14.56 263.61 1422.17 11.61 93.67 66.89 8.22 13.50 101.00 555.06 -
[1] 周欢水, 向众, 申建军, 等. 中国荒漠化面积与分布特点[J]. 大自然探索, 1998, 17(4):61-63 ZHOU Huanshui, XIANG Zhong, SHEN Jianjun, et al. The area and distribution of the desertification affected land in China[J]. Exploration of Nature, 1998, 17(4):61-63.]
[2] 昝国盛, 王翠萍, 李锋, 等. 第六次全国荒漠化和沙化调查主要结果及分析[J]. 林业资源管理, 2023(1):1-7 ZAN Guosheng, WANG Cuiping, LI Feng, et al. Key data results and trend analysis of the sixth national survey on desertification and sandification[J]. Forest Resources Management, 2023(1):1-7.]
[3] Kocurek G, Lancaster N. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example[J]. Sedimentology, 1999, 46(3):505-515. doi: 10.1046/j.1365-3091.1999.00227.x
[4] Xu Z W, Mason J A, Xu C, et al. Critical transitions in Chinese dunes during the past 12, 000 years[J]. Science Advances, 2020, 6(9):eaay8020. doi: 10.1126/sciadv.aay8020
[5] Yizhaq H, Ashkenazy Y, Tsoar H. Why do active and stabilized dunes coexist under the same climatic conditions?[J]. Physical Review Letters, 2007, 98(18):188001. doi: 10.1103/PhysRevLett.98.188001
[6] 凌裕泉, 屈建军, 胡玟. 沙面结皮形成与微环境变化[J]. 应用生态学报, 1993, 4(4):393-398 doi: 10.3321/j.issn:1001-9332.1993.04.004 LING Yuquan, QU Jianjun, HU Min. Crust Formation on sand surface and microenvironmental change[J]. Chinese Journal of Applied Ecology, 1993, 4(4):393-398.] doi: 10.3321/j.issn:1001-9332.1993.04.004
[7] Danin A. Plant species diversity and plant succession in a sandy area in the northern Negev[J]. Flora, 1978, 167(5):409-422. doi: 10.1016/S0367-2530(17)31133-7
[8] Duan Z H, Xiao H L, Li X R, et al. Evolution of soil properties on stabilized sands in the Tengger Desert, China[J]. Geomorphology, 2004, 59(1-4):237-246. doi: 10.1016/j.geomorph.2003.07.019
[9] 钱广强, 董治宝, 罗万银, 等. 巴丹吉林沙漠地表沉积物粒度特征及区域差异[J]. 中国沙漠, 2011, 31(6):1357-1364 QIAN Guangqiang, DONG Zhibao, LUO Wanyin, et al. Grain size characteristics and spatial variation of surface sediments in the Badain Jaran Desert[J]. Journal of Desert Research, 2011, 31(6):1357-1364.]
[10] 蒋凯鑫, 于坤霞, 李鹏, 等. 砒砂岩区典型淤地坝沉积泥沙特征及来源分析[J]. 水土保持学报, 2020, 34(1):47-53 JIANG Kaixin, YU Kunxia, LI Peng, et al. Sediment characteristics and sources analysis of typical check dam in Pisha sandstone area[J]. Journal of Soil and Water Conservation, 2020, 34(1):47-53.]
[11] 孔凡彪, 陈海涛, 徐树建, 等. 山东章丘黄土粒度指示的粉尘堆积过程及古气候意义[J]. 地理学报, 2021, 76(5):1163-1176 doi: 10.11821/dlxb202105009 KONG Fanbiao, CHEN Haitao, XU Shujian, et al. Dust accumulation processes and palaeoenvironmental significance of loess indicated by grain size in Zhangqiu, Shandong province[J]. Acta Geographica Sinica, 2021, 76(5):1163-1176.] doi: 10.11821/dlxb202105009
[12] 刘德政, 夏非. 江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(5):210-220 LIU Dezheng, XIA Fei. Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the Middle Jiangsu coast and their paleoenvironmental significances[J]. Marine Geology & Quaternary Geology, 2021, 41(5):210-220.]
[13] Chen Y G, Pan M H, Hao Z W, et al. Grain size-dependent geochemical evidence reveals provenance and implications of Aeolian sands, Dinggye region, southern Tibet[J]. Journal of Mountain Science, 2022, 19(7):1998-2014. doi: 10.1007/s11629-021-7225-1
[14] 丁雪, 胡邦琦, 赵京涛, 等. 九州-帕劳海脊南段及邻近海域表层沉积物元素地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2023, 43(1):61-70 DING Xue, HU Bangqi, ZHAO Jingtao, et al. Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance[J]. Marine Geology & Quaternary Geology, 2023, 43(1):61-70.]
[15] 吴利禄, 高翔, 褚建民, 等. 民勤绿洲-荒漠过渡带梭梭人工林净碳交换及其影响因子[J]. 应用生态学报, 2019, 30(10):3336-3346 WU Lilu, GAO Xiang, CHU Jianmin, et al. Net carbon exchange and its driving factors of Haloxylon ammodendron plantation in the oasis-desert ecotone of Minqin, China[J]. Chinese Journal of Applied Ecology, 2019, 30(10):3336-3346.]
[16] 贾宝全, 慈龙骏, 蔡体久, 等. 绿洲-荒漠交错带环境特征初步研究[J]. 应用生态学报, 2002, 13(9):1104-1108 doi: 10.3321/j.issn:1001-9332.2002.09.012 JIA Baoquan, CI Longjun, CAI Tijiu, et al. Preliminary research on environmental characteristics of oasis-desert ecotone[J]. Chinese Journal of Applied Ecology, 2002, 13(9):1104-1108.] doi: 10.3321/j.issn:1001-9332.2002.09.012
[17] Ren X Z, Yang X P, Wang Z T, et al. Geochemical evidence of the sources of Aeolian sands and their transport pathways in the Minqin Oasis, northwestern China[J]. Quaternary International, 2014, 334-335:165-178. doi: 10.1016/j.quaint.2014.04.037
[18] 杨宁宁, 董治宝, 李恩菊, 等. 民勤县固定与半固定沙丘粒度特征分析[J]. 水土保持通报, 2011, 31(6):11-14,20 YANG Ningning, DONG Zhibao, LI Enju, et al. Grain size characteristics of fixed and semi-fixed dunes in Minqin County[J]. Bulletin of Soil and Water Conservation, 2011, 31(6):11-14,20.]
[19] 杜建会, 严平, 丁连刚, 等. 民勤绿洲不同演化阶段白刺灌丛沙堆表面土壤理化性质研究[J]. 中国沙漠, 2009, 29(2):248-253 DU Jianhui, YAN Ping, DING Liangang, et al. Soil physical and chemical properties of Nitraria tangutorun nebkhas surface at different development stages in Minqin Oasis[J]. Journal of Desert Research, 2009, 29(2):248-253.]
[20] 赵鹏, 朱淑娟, 段晓峰, 等. 民勤绿洲边缘阻沙带表层土壤粒度空间分布特征[J]. 干旱区研究, 2021, 38(5):1335-1345 ZHAO Peng, ZHU Shujuan, DUAN Xiaofeng, et al. Spatial distribution characteristics of grain size of surface soil in the sand-resitant belt of Minqin Oasis marginal[J]. Arid Zone Research, 2021, 38(5):1335-1345.]
[21] 郭树江, 杨自辉, 王强强, 等. 青土湖干涸湖底风沙流结构及输沙粒径特征[J]. 生态学杂志, 2021, 40(4):1166-1176 GUO Shujiang, YANG Zihui, WANG Qiangqiang, et al. The structure and grain size of wind-sand flow in the dry bottom of Qingtu Lake[J]. Chinese Journal of Ecology, 2021, 40(4):1166-1176.]
[22] 韩福贵, 满多清, 郑庆钟, 等. 青土湖典型湿地白刺灌丛沙堆群落物种多样性及土壤养分变化特征研究[J]. 草业学报, 2021, 30(1):36-45 doi: 10.11686/cyxb2020353 HAN Fugui, MAN Duoqing, ZHENG Qingzhong, et al. Species diversity and soil nutrient changes of a Nitraria tangutorum shrub community in Qingtu Lake wetland[J]. Acta Prataculturae Sinica, 2021, 30(1):36-45.] doi: 10.11686/cyxb2020353
[23] 陈有桂. 西藏定结地区不同类型沙丘表层沉积物地球化学特征及环境意义[D]. 西北师范大学硕士学位论文, 2023 CHEN Yougui. Geochemical characteristics and environmental significance of surface sediments from different types of sand dunes in the Dinggye area, Tibet[D]. Master Dissertation of Northwest Normal University, 2023.]
[24] Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11):1237-1248. doi: 10.1002/esp.261
[25] 吴正. 风沙地貌学[M]. 北京: 科学出版社, 1987:1-316 WU Zheng. Aeolian Geomorphology[M]. Beijing: Science Press, 1987:1-316.]
[26] Pan M H, Chen Y G, Hao Z W, et al. Geochemical characteristics and environmental implications of surface sediments from different types of sand dunes in the Dinggye area, southern Tibet[J]. International Journal of Environmental Research and Public Health, 2022, 19(17):10628. doi: 10.3390/ijerph191710628
[27] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell Scientific, 1985: 277.
[28] 靳鹤龄, 苏志珠, 孙忠. 浑善达克沙地全新世中晚期地层化学元素特征及其气候变化[J]. 中国沙漠, 2003, 23(4):366-371 doi: 10.3321/j.issn:1000-694X.2003.04.005 JIN Heling, SU Zhizhu, SUN Zhong. Characters of chemical elements in strata of Middle and Late Holocene in hunshandake desert and the indicating climatic changes[J]. Journal of Desert Research, 2003, 23(4):366-371.] doi: 10.3321/j.issn:1000-694X.2003.04.005
[29] Liu B, Jin H L, Sun L Y, et al. Geochemical evidence for Holocene millennial-scale climatic and environmental changes in the south-eastern Mu Us Desert, northern China[J]. International Journal of Earth Sciences, 2015, 104(7):1889-1900. doi: 10.1007/s00531-015-1161-7
[30] 李恩菊. 巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D]. 陕西师范大学博士学位论文, 2011 LI Enju. Comparative study on sediment characteristics of Badain Jaran Desert and Tengger Desert[D]. Doctor Dissertation of Shaanxi Normal University, 2011.]
[31] 庞红丽, 高红山, 李富强, 等. 黄河宁蒙段沉积物地球化学元素组成及分布特征[J]. 中国沙漠, 2022, 42(5):44-53 PANG Hongli, GAO Hongshan, LI Fuqiang, et al. Geochemical element composition and spatial distribution characteristics of sediments in the Ningxia-Inner Mongolia section of the Yellow River[J]. Journal of Desert Research, 2022, 42(5):44-53.]
[32] 刘定辉, 李勇. 植物根系提高土壤抗侵蚀性机理研究[J]. 水土保持学报, 2003, 17(3):34-37,117 doi: 10.3321/j.issn:1009-2242.2003.03.010 LIU Dinghui, LI Yong. Mechanism of plant roots improving resistance of soil to concentrated flow erosion[J]. Journal of Soil and Water Conservation, 2003, 17(3):34-37,117.] doi: 10.3321/j.issn:1009-2242.2003.03.010
[33] 殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2):343-351 YIN Zhiqiang, QIN Xiaoguang, WU Jinshui, et al. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments in some areas of northern China[J]. Acta Sedimentologica Sinica, 2009, 27(2):343-351.]
[34] 董斌. 石羊河流域历史地理若干专题研究[D]. 兰州大学硕士学位论文, 2016 DONG Bin. Monographic research on the historical geography of the Shiyang River Basin[D]. Master Dissertation of Lanzhou University, 2016.]
[35] Lancaster N. Grain-size characteristics of linear dunes in the southwestern Kalahari[J]. Journal of Sedimentary Research, 1986, 56(3):395-400.
[36] 刘英姿. 腾格里沙漠中格状沙丘形态及成因研究[D]. 陕西师范大学硕士学位论文, 2013 LIU Yingzi. Study on morphology and genesis of trellis dunes in Tengger Desert[D]. Master Dissertation of Shaanxi Normal University, 2013.]
[37] 许明, 陈建文, 袁勇, 等. 华南下扬子区早寒武世幕府山组沉积环境: 来自于全岩地球化学的启示[J]. 海洋地质与第四纪地质, 2021, 41(6):82-90 XU Ming, CHEN Jianwen, YUAN Yong, et al. Sedimentary environment of the Lower Cambrian mufushan Formation in the Lower Yangtze region: evidence from whole-rock geochemistry[J]. Marine Geology & Quaternary Geology, 2021, 41(6):82-90.]
[38] Zhang Z C, Liang A M, Zhang C X, et al. Gobi deposits play a significant role as sand sources for dunes in the Badain Jaran Desert, Northwest China[J]. CATENA, 2021, 206:105530. doi: 10.1016/j.catena.2021.105530
[39] Zhang Z C, Pan K J, Zhang C X, et al. Geochemical characteristics and the provenance of Aeolian material in the Hexi Corridor Desert, China[J]. CATENA, 2020, 190:104483. doi: 10.1016/j.catena.2020.104483
[40] 刘璐, 谢远云, 迟云平, 等. 地球化学组成对浑善达克沙地与科尔沁沙地风化和沉积循环特征及其物源的指示[J]. 海洋地质与第四纪地质, 2021, 41(4):192-206 LIU Lu, XIE Yuanyun, CHI Yunping, et al. Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance[J]. Marine Geology & Quaternary Geology, 2021, 41(4):192-206.]
[41] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717. doi: 10.1038/299715a0
[42] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2):295-303. doi: 10.1086/648222
[43] 李小妹, 严平, 吴伟, 等. 毛布拉格孔兑地表风沙沉积物粒度与地球化学元素分布特征[J]. 干旱区地理, 2016, 39(3):468-476 LI Xiaomei, YAN Ping, WU Wei, et al. Spatial distribution characteristics of the grain size and geochemical elements of surface sediments of Mu Bulag River[J]. Arid Land Geography, 2016, 39(3):468-476.]
[44] Liu B, Jin H L, Sun L Y, et al. Grain size and geochemical study of the surface deposits of the sand dunes in the Mu Us desert, northern China[J]. Geological Journal, 2017, 52(6):1009-1019.
[45] 向云. 黄土丘陵区草地枯落物分解特征及其对土壤性质的影响[D]. 西北农林科技大学博士学位论文, 2018 XIANG Yun. The decomposition characteristics of grass litter and its effects on soil properties in loess hilly region[D]. Doctor Dissertation of Northwest A&F University, 2018.]
[46] 古拉依赛木·艾拜都拉, 张峰, 吴枫, 等. 腾格里沙漠沙丘沉积物粒度特征及其空间差异[J]. 中国沙漠, 2022, 42(5):133-145 Gulayisaimu A, ZHANG Feng, WU Feng, et al. Grain size characteristics of dune sands and spatial variation in the Tengger Desert[J]. Journal of Desert Research, 2022, 42(5):133-145.
[47] Lang L L, Wang X M, Hasi E, et al. Nebkha (coppice dune) Formation and significance to environmental change reconstructions in arid and semiarid areas[J]. Journal of Geographical Sciences, 2013, 23(2):344-358. doi: 10.1007/s11442-013-1014-x
[48] 杜建会, 严平, 俄有浩. 甘肃民勤不同演化阶段白刺灌丛沙堆分布格局及特征[J]. 生态学杂志, 2007, 26(8):1165-1170 DU Jianhui, YAN Ping, E Youhao. Distribution patterns and characteristics of Nitraria tangutorun nebkha at its different evolvement stages in the Minqin County of Gansu province[J]. Chinese Journal of Ecology, 2007, 26(8):1165-1170.]
[49] 王飞, 郭树江, 张卫星, 等. 干旱荒漠区不同演替阶段白刺灌丛沙堆土壤粒度特征[J]. 西北林学院学报, 2020, 35(1):15-20,44 doi: 10.3969/j.issn.1001-7461.2020.01.03 WANG Fei, GUO Shujiang, ZHANG Weixing, et al. Soil grain-size characteristics of Nitraria tangutorum at different succession stages in Desert area[J]. Journal of Northwest Forestry University, 2020, 35(1):15-20,44.] doi: 10.3969/j.issn.1001-7461.2020.01.03