晚中新世柴达木盆地低偏心率时期倾角驱动的干湿变化

邓欣宜, 聂军胜, 任雪萍

邓欣宜,聂军胜,任雪萍. 晚中新世柴达木盆地低偏心率时期倾角驱动的干湿变化[J]. 海洋地质与第四纪地质,2022,42(6): 193-199. DOI: 10.16562/j.cnki.0256-1492.2022052601
引用本文: 邓欣宜,聂军胜,任雪萍. 晚中新世柴达木盆地低偏心率时期倾角驱动的干湿变化[J]. 海洋地质与第四纪地质,2022,42(6): 193-199. DOI: 10.16562/j.cnki.0256-1492.2022052601
DENG Xinyi,NIE Junsheng,REN Xueping. Obliquity-driven moisture changes in Qaidam Basin in Late Miocene during low eccentricity period[J]. Marine Geology & Quaternary Geology,2022,42(6):193-199. DOI: 10.16562/j.cnki.0256-1492.2022052601
Citation: DENG Xinyi,NIE Junsheng,REN Xueping. Obliquity-driven moisture changes in Qaidam Basin in Late Miocene during low eccentricity period[J]. Marine Geology & Quaternary Geology,2022,42(6):193-199. DOI: 10.16562/j.cnki.0256-1492.2022052601

晚中新世柴达木盆地低偏心率时期倾角驱动的干湿变化

基金项目: 科技部第二次青藏高原综合科学考察研究专题项目“碰撞以来古地理格局与构造地貌过程”(2019QZKK0704)
详细信息
    作者简介:

    邓欣宜(2000—),男,硕士研究生,自然地理学专业,E-mail:dengxy18@lzu.edu.cn

  • 中图分类号: P532

Obliquity-driven moisture changes in Qaidam Basin in Late Miocene during low eccentricity period

  • 摘要: 当前间冰期正处在地球轨道低偏心率时期,在全球变暖的大趋势下北半球冰盖正逐渐消融。因此,解析北半球无冰背景下低偏心率时期亚洲内陆干湿变化规律和驱动机制,对预测该地区未来环境变化具有重要意义。然而,以前的研究关注亚洲内陆低偏心率时期环境变化的高分辨率记录较少,限制了对该区干湿循环和驱动机制的理解。柴达木盆地位于东亚季风降水边缘,对干湿变化非常敏感。选取柴达木盆地东北部大红沟剖面河湖相沉积地层,利用频率磁化率指标重建晚中新世时期(9~12 Ma)高分辨率干湿变化历史,揭示了典型的低偏心率时期干湿变化主导周期和轨道斜率驱动机制。结果表明,在低偏心率时期(9.2~9.4 、 9.6~9.8 和11.2~11.4 Ma),该区域干湿变化以4万年周期为主,对应倾角变化,说明在岁差振幅较小时,倾角变化可能上升为轨道调控干旱区干湿变化的主导因素。这一发现对理解未来气候变化具有一定的借鉴意义。
    Abstract: The present interglacial period is at a period of low eccentricity, and the ice sheets in the northern hemisphere are gradually melting due to the global warming. Understanding the variation and the mechanism of dry-wet alternation in Asian inland during low eccentricity period under the ice-free background of the northern hemisphere is very important to predict the future environmental changes in the area. At present, little attention is paid to high-resolution records of environment variations during low eccentricity periods in inland Asia, which limits the understanding of moisture changes and the mechanism in the region. The Qaidam Basin, located at the edge of East Asian monsoon rain zone, is very sensitive to dry-wet climate alternation. In this study, we selected the fluvial-lacustrine strata of the Dahonggou section in the northeastern Qaidam Basin, along which the frequency magnetic susceptibility was measured, to reconstruct the high-resolution moisture history of the Late Miocene (12~9 Ma). Results revealed typical dry-wet changes and show that the local climate change has a clear 40-ka cycle, corresponding to the obliquity in typical low eccentricity condition when the precession amplitude is small during 9.4~9.2 Ma, 9.8~9.6 Ma, and 11.4~11.2 Ma. It suggests that obliquity factor may rise and become a dominant factor on orbital regulation of environment in arid area. This finding has important implications for understanding future climate change.
  • 厚层辫状河道储集层内部发育多种类型隔夹层,各隔夹层形态和规模相差大,而隔夹层展布的定量研究对厚层砂岩中骨架河道刻画和河道期次划分意义重大。近年来,国内外学者多侧重于露头和现代沉积的河流相储层构型研究,对地下储层构型的研究多集中于曲流河储层,有关辫状河道储层的定量表征研究较少[1-5]

    西湖凹陷A构造其花港组主力目的层H3砂层组发育厚层辫状河道砂岩,渗透率多为(0.1~10)×10−3 μm2,储层质量较差,为低渗—特低渗储层。多口井取心资料证实,物性整体随着埋深的加大而变差,横向及纵向非均质性强,因此,寻找优质储层发育区是产能释放、储量升级的攻关方向。

    前人定性评价认为强水动力、稳定、低摆动条件下的骨架河道砂体为优质储层发育区,但骨架河道的期次、连通性及其展布范围尚需进一步研究。因此,本文引入灰色理论进行半定量研究,通过隔夹层的识别,半定量划分河道砂体期次,再利用与工区构造、沉积背景相似地区的经验公式,计算单河道宽厚比和砂地比,明确河道连通性及展布范围,为下一步勘探开发指明方向[6-9]

    西湖凹陷位于东海陆架盆地东北部,是隶属于东海陆架盆地的次级构造单元,呈NNE向展布,东临钓鱼岛隆褶带,西临海礁隆起,北部为虎皮礁隆起。自西向东可划分出西斜坡、中央反转构造带以及东部断阶带[10-13]图1)。西湖凹陷新生代经历基隆运动、瓯江运动、玉泉运动、龙井运动和冲绳海槽运动,将新生代自下而上分为断陷期、拗陷期和区域沉降期3大构造演化阶段,发育始新统平湖组、渐新统花港组、中新统龙井组、玉泉组、柳浪组、上新统三潭组与更新统东海群等地层,其中本次研究的主要目的层位为渐新统花港组[13-17]表1)。花港组自下而上发育H12—H1砂层组,A构造气层分布在花港组H3—H9,H3为主力目的层。西湖凹陷花港组为东缘受强挤压的大型坳陷盆地充填沉积,并经历两期从坳陷冲积平原–大型轴向河流体系–湖泊三角洲体系–浅水湖泊充填演化过程。花港组下段为强坳陷次幕充填沉积,具“北高南低、北窄南宽、三源三汇多通道”的古构造地貌格局;花港组上段为裂后挤压I幕弱坳陷次幕充填沉积,该阶段继承了花下段沉积时的古构造地貌格局,但其沉积沉降中心逐渐移向坳陷中部,H5—H3砂组为低容纳空间背景下的多源汇聚大型轴向河道体系沉积;H2—H1砂组充填时为高容纳空间背景下的湖泊体系、湖泊三角洲体系沉积。

    图  1  西湖凹陷构造带位置及钻探井位
    Figure  1.  Regional tectonic pattern of the Xihu Sag

    隔夹层是沉积过程中河流水动力条件变化或沉积后成岩作用导致沉积物岩性差异而形成的,隔夹层与不同级次的构型界面相对应。一类是基准面下降晚期或上升早期,可容纳空间增量小于沉积物供给量,多见于岩性突变面,如各级冲刷面等;界面之上多发育大套泥岩隔层,测井曲线多位于基线附近,呈线形或微齿线形。另一类是基准面持续上升期,此时沉积物供给量小于可容纳空间增量,物源供给不足,沉积物以粉砂岩、泥岩等细粒为主,易形成落淤层夹层、钙质夹层等,测井曲线呈现小幅回返,自然伽马异常幅度小于1/3,电阻、声波曲线异常幅度1/3~2/3[18-19]

    西湖凹陷A构造已钻井揭示该区花港组砂层厚度大,录井资料显示H3砂层厚度可达100余米,岩性为多种粒径砂岩,稳定泥岩不发育,仅利用单一测井曲线难以准确识别隔夹层类型,严重制约了单砂体和单河道的划分,故而本文引入灰色理论,选取对泥岩敏感的GR、RT与DEN曲线值,计算各曲线的权重指数,从而拟合出表征隔夹层类型的综合评价指标IRE,同时可以看出IRE值与泥质含量有较好的对应关系(图2);通过对比取心段IRE值与隔夹层对应关系,确定工区隔夹层定量划分标准,进而得出全井段的隔夹层分布特征[20-21]

    图  2  IRE与泥质含量关系
    Figure  2.  Diagram of IRE vs mud content

    以A1井为例,通过计算可知,选取的三条曲线GR、RT、DEN权重指数分别为0.46、0.36和0.18,将原曲线值与权重指数分别相乘再求和,即可得到该井区指示隔夹层类型的综合评价指标IRE值。结合录井资料可知,H3顶部厚层泥岩隔层测井曲线回返幅度小,位于泥岩基线附近,且IRE值明显偏高,为51~110;中间砂砾岩发育段揭示落淤层夹层测井曲线回返显著,IRE值偏低,为24~45。对照IRE值,H3砂层组100 余米的厚砂岩可识别出3大套共10期河道砂体。其中渗透率在1×10−3 μm2以上的优质储层主要发育在H3b正旋回的中下部,其IRE值低,多为25~30,指示隔夹层均为落淤层,处在滞留沉积发育的上覆砂体之中,是在多次洪泛事件不断向下游移动过程中垂向加积而成的正向地貌,主要是一套以粗粒沉积为主的沉积物,岩相组合为强水动力条件下的大量含砾砂岩–中粗砂岩–中砂岩,其渗透率往往较高,可以达到1×10−3 μm2以上,判断为I类储层。H3c IRE值略高,集中在36~45,泥岩夹层逐渐增加,水动力条件减弱,岩相组合表现为少量砂质砾岩–少量块状层理中粗砂岩–大量块状及平行层理细砂岩,渗透率大于1×10−3 μm2的储层也相对减少,判断为II1类储层。而H3a IRE更高,隔夹层多泥岩层,多为洪水退却期水流波动在心滩顶部沉积物质;或者为局部动荡洪水期淹没心滩,形成类似于天然堤的沉积。由于水动力环境较弱,其沉积物粒度较细,代表弱水动力的细粒砂岩增多,物性更差,渗透率往往较低,多小于1×10−3 μm2,为II2类储层(图3表2

    图  3  A1井隔夹层识别与划分
    Figure  3.  Identification and division of barrier and interlayer in Well A1
    表  2  IRE与储层类型定量关系
    Table  2.  Quantitative relationship between IRE and reservoir type
    隔夹层类型IRE岩相组合水动力强弱渗透率/10−3 μm2储层类型
    落淤层24~37块状含砾砂岩–中粗砂岩–块状中砂岩高能水道0.3~79
    (均值 21)
    I类
    落淤层35~45少量砂质砾岩–少量块状中粗砂岩–大量块状细砂+平行细砂低能水道0.5~8
    (均值1.2)
    II1类
    泥岩层51~110平行中细砂岩–粉细砂低能水道0~1
    (均值0.4)
    II2类
    下载: 导出CSV 
    | 显示表格

    利用灰色理论对A构造其他各井进行划分与识别,并在储层隔夹层类型、厚度和频率认识的基础上,对隔夹层在剖面上的分布展开进一步的研究。在H3沉积早期,3口井隔夹层均发育较少;进入H3沉积中期,A5井和A4井隔夹层开始增多,其中A5井发育薄厚不等的隔夹层,A4井则发育厚层隔夹层;H3沉积晚期,各井的隔夹层开始丰富发育起来。但是各井间差异也尤为凸显,其中A5井的隔夹层发育频繁,纵向上反复切割砂体,且发育厚度较薄,使得储层的非均质性进一步加剧;A4井则发育大套厚层的隔层,储层基本不发育(表3图4)。

    表  3  A构造H3 IRE值与隔夹层类型划分
    Table  3.  The IRE value of A Structure and the corresponding interlayer type
    砂层期次12345678910
    A1井IRE36~4241~4554~7030~3926~3424~2927~3031~4234~4351~72
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层落淤层泥岩层
    A2井IRE37~4630~3344~7024~2927~3041~6031~4234~5341~5243~104
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层泥岩层落淤层泥岩层泥岩层泥岩层
    A4井IRE43~4947~5342~8242~4731~4245~7741~7653~67
    隔夹层类型泥岩层泥岩层泥岩层落淤层落淤层泥岩层泥岩层泥岩层
    A5井IRE43~5036~5537~4538~4739~4343~5042~7152~6047~5643~92
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层泥岩层泥岩层
    下载: 导出CSV 
    | 显示表格
    图  4  A构造H3储层物性分布连井剖面
    Figure  4.  The crosswell profile of H3 reservoir physical distribution in the A Structure

    在单河道砂体识别划分的基础上,从井资料上读出各单河道的厚度,如果能得到工区河道宽厚比,就能进一步计算出单河道的展布范围。通过调研,本文建立了一套通过计算单河道满岸深度,定量刻画单河道展布规模的经验公式[22-24]

    首先通过岩心资料,统计出工区H3交错层系组的平均厚度h1为0.6 m,从而利用公式(1)、(2)计算出沙丘高度h2为1.76 m,再利用公式(3)得出单河道满岸深度h3为18.7 m,通过单河道满岸深度h3与单河道宽度wb的关系式(4),得到单河道宽度wb为726.8 m,最后得到工区宽厚比A为38.87,而该宽厚比与井上读出的各单河道砂体厚度的乘积即为各期河道横向展布范围。通过计算可知,A1井区单河道展布范围为1.1~2.3 km,符合辫状河三角洲河道宽度一般为1~3 km的经验数值。

    $$ \beta = h_{1} /1.8 $$ (1)
    $$ h_{ 2} = 5.3\beta + 0.001\beta $$ (2)
    $$ h_{3}= 11.6h_{2}^{0.84 } \quad(0.1\;{\rm m} {\text{<}} h_{3} {\text{<}} 100\;{\rm m}) $$ (3)
    $$ w_{\rm b}=11.413\times h_{3}^{1.4182 } $$ (4)
    $$ A=w_{\rm b}/h_{3 } $$ (5)

    根据野外露头研究,辫状河三角洲单河道砂体常叠置出现,并能进一步划分为叠拼式、侧拼式和孤立式3大类。各单砂体垂向厚度和砂地比与砂体横向连通性呈现正相关关系,垂向上的砂岩含量大致等于平面上单河道的密度,等于横向上砂体连通的概率,能够反映平面上单河道砂体连通的概率;单砂体垂向厚度越大,砂地比越高,单河道密度越高,横向连通概率越大[25-26]

    单河道砂体厚度大于10 m,砂地比大于80%时,GR曲线多表现为箱型,齿化程度低,单砂体连通性好,以叠拼式为主。单河道砂体厚度为5~10 m,砂地比多为50%~80%,GR曲线以钟型–齿化箱型为主,砂体连通性变差,多呈侧拼式出现。单河道砂体厚度小于5 m,砂地比小于50%时,砂体连通性更差,多为孤立砂体出现。通过统计西湖凹陷A构造砂体厚度和砂地比可知,A构造花港组H3砂层组单砂体厚度均大于10 m,最大可达25 m,多集中在15 m,砂地比均大于85%,所以认为该区砂体以叠拼式为主。

    在单井类比的基础上,我们基于“旋回对比、分级控制、厚度约束”的原则,对井间也进行了类比。以同一油气藏系统的A1井和A5井为例,A1井和A5井岩性组合自下而上共识别出10期砂体,这10期砂体表现出细—粗—细的特征,粗粒相带主要集中于4—6期砂体发育,反映河道早期稳定,晚期摆动的特征;测井相多表现为箱型,A5井齿化程度强,局部可见漏斗型;从地震相来看,两口井早期同相轴变化弱,中晚期同相轴向A5井逐渐发散。结合岩心相、测井相和地震相认为,A1井与A5井间距3.17 km,属同一复河道带之内,但处于不同的部位,A1井更靠近河道的中心部位,A5井处于河道侧缘。而两口井砂地比约84%,自下而上单砂体厚度逐渐减薄,延伸宽度逐渐减小,所以推测砂体为拼叠型展布,且平面上同一套砂体连通性逐渐变差(图5)。

    图  5  A5井与A1井砂体精细对比
    Figure  5.  Detailed comparison of sand bodies between well A5 and A1

    从A1、A2、A4井来看,依然可以划分出10期砂体,与A1井相比,A2井GR值更低,晚期粗粒更为发育,地震相变化规律相似,优质储层占比略高,由于不属同一油气藏系统,认为A2井处于另一条分流河道的中心部位;A1井与A4井相比,A4井晚期河道不发育且自然伽马齿化程度增高,且不属于同一油气藏系统,因此认为A4井处于另一条分流河道的侧缘(图6)。

    图  6  A2井—A1井—A4井砂体精细对比
    Figure  6.  Fine comparison of sand bodies among wells A2-A1-A4

    优质储层的形成和发育受到两个方面因素的制约,其中沉积作用起决定性作用,构造和成岩作用是对沉积物改造的作用,一定程度上受沉积作用制约。综合构造、沉积与成岩作用等多方面的研究,认为在沉积卸载区内,高砂地比发育区,稳定、低摆动、强水动力条件、低泥质含量条件下的粗粒相带,后期易于受溶蚀改造的分流河道砂岩控制优质储层的发育。结合常规地震复合微相、瞬时地层切片、沉积微相及强溶蚀区分布,对优质储层发育的优势相带展开预测。

    A构造H3古地貌呈现北高南低的趋势,使得南块成为有利的汇水聚砂地区(图7a)。地震相显示,在A构造南块同相轴数量增加,前积特征显著(图7b、c),发育多期顶平底凸下切河道,多期河道呈纵向叠置横向交切发育(图7d)。因此,认为南块所处的沉积卸载区控制古水流向南在地势低洼区内汇聚,使得多期厚层辫状化分流河道的主体砂岩储层在该块发育,这一背景同样有利于高砂地比区在南块发育。

    图  7  A构造H3古地貌及地震复合微相河道识别
    Figure  7.  The paleogeomorphology of H3 in the A Structure and channel microfacies identification from seismic profile

    在H3沉积时期,西湖凹陷A构造主要受西部侧向和轴向物源影响,其中A1井与A5井处于同一条分流河道带之内,但分处不同部位,A1井区位于分流河道带多期叠置的中心部位,而A5井区则位于分流河道带侧缘部位,且分流河道由北向南有变好的趋势;A4井位于另一条分流河道之内,且受到轴向物源和侧向挤压应力影响,优质储层不发育(图8a)。

    图  8  H3沉积微相及粗粒相带分布图
    Figure  8.  Sedimentary microfacies and the distribution of coarse-grain facies in H3

    结合优质储层主控因素,粗粒相带是控制优质储层发育的关键,经过梳理发现砂地比与粗粒相带发育呈正相关。因此借助反演数据体,对平面砂地比进行预测,结合前期分流河道带的展布规模与范围刻画,形成H3粗粒相带的预测分布图,A构造南块处于粗粒相带的发育区(图8b)。

    A构造花港组H3储集空间类型为原生孔+次生溶蚀孔+少量微裂缝,溶蚀作用对砂体物性的改善是另一优质储层控制因素(图9)。中成岩A期主要受有机酸溶蚀,其主要来源为下伏平湖组烃源岩,因此,有效的供酸断裂体系及长时间的酸性环境,是形成强溶蚀区的关键。

    图  9  A构造花港组溶蚀面孔率与物性关系
    Figure  9.  Relationship between the porosity ratio in dissolution surface and the physical property in Huagang Formation of the A Structure

    在明确溶蚀作用控制优质储层发育的基础上,对强溶蚀区进行了平面预测。强溶蚀区主要分布在通源主控断裂F1两侧,由于南块通源断裂更为发育,南块的强溶蚀区范围也更大(表4图10a)。在沉积微相、粗粒相带、强溶蚀区预测的基础上,将三图进行叠合,认为A构造南块为优质储层发育的有利区(图10b)。

    表  4  强溶蚀区划分依据
    Table  4.  Identification criterion for the division of diagenetic facies in strong dissolution area
    成岩储集相A相B相C相D相
    岩石类型中、粗砂岩
    含砾砂岩
    中–细砂岩
    含砾砂岩
    细砂岩粉–细砂岩、泥砾砂岩、钙质砂岩
    沉积微相辫状河道主体河道侧缘
    泥质杂基/%0~42~51~71~13
    孔隙度/%6~115~103.5~102.2~9
    渗透率/10−3 μm2>10.5~10.2~0.5<0.2
    视压实率/%85~9980~9440~9540~93
    视胶结率/%<61~8.51~171~68
    视溶蚀率/%4~202.3~100.5~90~8
    DTS/(μs/ft)95~10590~115
    GR/API≤55>55
    RT/(Ω·m)≥45<45
    ZDEN/(g/cm)≤2.52>2.52
    储集性能较好致密
    下载: 导出CSV 
    | 显示表格
    图  10  A构造H3强溶蚀区分布及有利区带叠合图
    Figure  10.  Distribution of strong dissolution area in A Structure H3 and the superimposition map with promising reservoir

    (1)H3厚层砂岩储集层内发育2种类型隔夹层:落淤层夹层和泥岩层隔层。其中物性最好的中部低IRE值段,隔夹层均为落淤层,为I类储层;而上部IRE高,隔夹层多泥岩层,物性差,为II2类储层。

    (2)工区内单河道宽厚比为38.87,结合单砂体厚度,折算出各期河道展布范围为1.1~2.3 km。A构造H3砂地比多在70%以上,所以认为该区砂体多呈现叠拼型,垂向上连通性有所变化。

    (3)基于前期建立的河道发育模式,在地震复合微相指导下,对H3早期河道进行识别和追踪,认为复合河道带向南交汇增多,水动力更强,更利于优质储层发育。最后结合沉积微相、粗粒相带及成岩相分布特征,认为A构造南部有利储层更为发育。

  • 图  1   研究区及采样剖面位置图

    Figure  1.   The study area showing sampling section location

    图  2   大红沟剖面9~12 Ma频率磁化率记录和地球轨道参数对比图

    a—c. 地球轨道参数偏心率(红线)、岁差(绿线)和倾角(蓝线)曲线[2], d. 频率磁化率(χfd) 4万年周期滤波曲线, e. Log10χfd曲线, f. 低偏心率时期频率磁化率小波分析图,白线及箭头指示频率0.025。

    Figure  2.   Comparison in frequency magnetic susceptibility (χfd) recorded from the Dahonggou section with astronomical orbital parameter during 9 to 12 Ma

    a-c. The earth’s orbital parameters of eccentricity (red line), precession (green line), and obliquity [2]; d. 40 ka Gaussian bandpass filtered output of χfd; e. log10χfd curve; f. the wavelet transform of χfd during the period of low eccentricity, white line and arrows point at the frequency of 0.025.

  • [1]

    Berger A, Loutre M F. An exceptionally long interglacial ahead? [J]. Science, 2002, 297(5585): 1287-1288. doi: 10.1126/science.1076120

    [2]

    Laskar J, Robutel P, Joutel F et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.

    [3]

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Geneva: IPCC, 2014.

    [4]

    Deconto R M, Pollard D, Wilson P A et al. Thresholds for Cenozoic bipolar glaciation [J]. Nature, 2008, 455(7213): 652-656. doi: 10.1038/nature07337

    [5]

    Wunderling N, Willeit M, Donges J F et al. Global warming due to loss of large ice masses and Arctic summer sea ice [J]. Nature Communications, 2020, 11(1): 5177. doi: 10.1038/s41467-020-18934-3

    [6]

    Holbourn A E, Kuhnt W, Clemens S C et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon [J]. Nature Communications, 2018, 9(1): 1584. doi: 10.1038/s41467-018-03950-1

    [7]

    Westerhold T, Marwan N, Drury A J et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years [J]. Science, 2020, 369(6509): 1383-1387. doi: 10.1126/science.aba6853

    [8] 丁仲礼. 米兰科维奇冰期旋回理论: 挑战与机遇[J]. 第四纪研究, 2006, 26(5):710-717 doi: 10.3321/j.issn:1001-7410.2006.05.005

    DING Zhongli. The milankovitch theory of Pleistocene glacial cycles: challenges and chances [J]. Quaternary Sciences, 2006, 26(5): 710-717. doi: 10.3321/j.issn:1001-7410.2006.05.005

    [9] 汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5):535-556 doi: 10.1360/csb2009-54-5-535

    WANG Pinxian. Global monsoon in a geological perspective [J]. Chinese Science Bulletin, 2009, 54(5): 535-556. doi: 10.1360/csb2009-54-5-535

    [10]

    Abels H A, Aziz H A, Ventra D et al. Orbital climate forcing in mudflat to marginal Lacustrine deposits in the Miocene Teruel Basin (Northeast Spain) [J]. Journal of Sedimentary Research, 2009, 79(11): 831-847. doi: 10.2110/jsr.2009.081

    [11]

    Ao H, Rohling E J, Zhang R et al. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary [J]. Nature Communications, 2021, 12(1): 6935. doi: 10.1038/s41467-021-27054-5

    [12]

    Gao P, Nie J S, Yan Q et al. Millennial resolution late Miocene Northern China precipitation record spanning astronomical analogue interval to the future [J]. Geophysical Research Letters, 2021, 48(15): e2021GL093942.

    [13] 杨彦峰, 符超峰, 徐新文, 等. 青藏高原东北缘尖扎盆地晚中新世地层绝对天文年代标尺的建立[J]. 地球科学与环境学报, 2021, 43(4):710-723 doi: 10.19814/j.jese.2020.10022

    YANG Yanfeng, FU Chaofeng, XU Xinwen et al. Establishment of absolute astronomical time scale of late Miocene strata in Jianzha Basin, the northeastern margin of Tibetan Plateau, China [J]. Journal of Earth Sciences and Environment, 2021, 43(4): 710-723. doi: 10.19814/j.jese.2020.10022

    [14]

    An Z S, Wu G X, Li J P et al. Global monsoon dynamics and climate change [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 29-77. doi: 10.1146/annurev-earth-060313-054623

    [15]

    Frisch K, Voigt S, Verestek V et al. Long-period astronomical forcing of Westerlies' strength in central Asia during Miocene climate cooling [J]. Paleoceanography and Paleoclimatology, 2019, 34(11): 1784-1806. doi: 10.1029/2019PA003642

    [16]

    Wang Y C, Lu H Y, Wang K X et al. Combined high- and low-latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period [J]. Science Advances, 2020, 6(46): eabc2414. doi: 10.1126/sciadv.abc2414

    [17]

    Wu N Q, Chen X Y, Rousseau D D et al. Climatic conditions recorded by terrestrial mollusc assemblages in the Chinese Loess Plateau during marine Oxygen Isotope Stages 12-10 [J]. Quaternary Science Reviews, 2007, 26(13-14): 1884-1896. doi: 10.1016/j.quascirev.2007.04.006

    [18]

    An Z S, Clemens S C, Shen J et al. Glacial-interglacial Indian summer monsoon dynamics [J]. Science, 2011, 333(6043): 719-723. doi: 10.1126/science.1203752

    [19]

    Hao Q Z, Wang L, Oldfield F et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability [J]. Nature, 2012, 490(7420): 393-396. doi: 10.1038/nature11493

    [20]

    Lu H Y, Yi S W, Liu Z Y et al. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2 forcing [J]. Geology, 2013, 41(9): 1023-1026. doi: 10.1130/G34488.1

    [21]

    Shi P H, Yang T B, Tian Q C et al. Loess record of climatic changes during MIS 12-10 in the Jingyuan section, northwestern Chinese Loess Plateau [J]. Quaternary International, 2013, 296: 149-159. doi: 10.1016/j.quaint.2012.08.2102

    [22]

    Song Y G, Fang X M, King J W et al. Magnetic parameter variations in the Chaona loess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the middle Pleistocene climate transition [J]. Quaternary Research, 2014, 81(3): 433-444. doi: 10.1016/j.yqres.2013.10.002

    [23]

    Kang S G, Wang X L, Roberts H M et al. Late Holocene anti-phase change in the East Asian summer and winter monsoons [J]. Quaternary Science Reviews, 2018, 188: 28-36. doi: 10.1016/j.quascirev.2018.03.028

    [24]

    Liu J B, Shen Z W, Chen W et al. Dipolar mode of precipitation changes between north China and the Yangtze River Valley existed over the entire Holocene: Evidence from the sediment record of Nanyi Lake [J]. International Journal of Climatology, 2021, 41(3): 1667-1681. doi: 10.1002/joc.6906

    [25] 张月婷, 吴乃琴, 李丰江, 等. 低偏心率间冰期(Mis 19)黄土高原生态环境变化及影响机制[J]. 中国科学:地球科学, 2020, 63(9):1408-1421 doi: 10.1007/s11430-020-9628-5

    ZHANG Yueting, WU Naiqin, LI Fengjiang et al. Eco-environmental changes in the Chinese Loess Plateau during low-eccentricity interglacial Marine Isotope Stage 19 [J]. Science China Earth Sciences, 2020, 63(9): 1408-1421. doi: 10.1007/s11430-020-9628-5

    [26]

    Wang Y J, Cheng H, Edwards R L et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years [J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692

    [27]

    Cheng H, Edwards R L, Sinha A et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    [28]

    Chen F H, Yu Z C, Yang M L et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history [J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. doi: 10.1016/j.quascirev.2007.10.017

    [29]

    Zhao Y, Tzedakis P C, Li Q et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years [J]. Science Advances, 2020, 6(19): eaay6193. doi: 10.1126/sciadv.aay6193

    [30]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.

    [31]

    Wang P X, Wang B, Cheng H et al. The global monsoon across timescales: coherent variability of regional monsoons [J]. Climate of the Past, 2014, 10(6): 2007-2052. doi: 10.5194/cp-10-2007-2014

    [32]

    Nomade S, Bassinot F, Marino M et al. High-resolution foraminifer stable isotope record of MIS 19 at Montalbano Jonico, southern Italy: a window into Mediterranean climatic variability during a low-eccentricity interglacial [J]. Quaternary Science Reviews, 2019, 205: 106-125. doi: 10.1016/j.quascirev.2018.12.008

    [33]

    Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014

    [34]

    Loutre M F, Berger A. Marine isotope stage 11 as an analogue for the present interglacial [J]. Global and Planetary Change, 2003, 36(3): 209-217. doi: 10.1016/S0921-8181(02)00186-8

    [35]

    Ding Z L, Liu T, Rutter N W et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years [J]. Quaternary Research, 1995, 44(2): 149-159. doi: 10.1006/qres.1995.1059

    [36]

    Liu T, Ding Z L. Chinese loess and the paleomonsoon [J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 111-145. doi: 10.1146/annurev.earth.26.1.111

    [37]

    Sun Y B, Kutzbach J, An Z S et al. Astronomical and glacial forcing of East Asian summer monsoon variability [J]. Quaternary Science Reviews, 2015, 115: 132-142. doi: 10.1016/j.quascirev.2015.03.009

    [38]

    Wu C H, Tsai P C. Obliquity-driven changes in East Asian seasonality [J]. Global and Planetary Change, 2020, 189: 103161. doi: 10.1016/j.gloplacha.2020.103161

    [39]

    Roychowdhury R. Eccentricity Modulation of Precessional Variation in the Earth’s Climate Response to Astronomical Forcing: a Solution to the 41-kyr Mystery[D]. Doctor dissertation, University of Massachusetts Amherst, 2018.

    [40] 石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟: 历史与展望[J]. 第四纪研究, 2020, 40(1):8-17 doi: 10.11928/j.issn.1001-7410.2020.01.02

    SHI Zhengguo, LEI Jing, ZHOU Peng et al. Numerical simulation researches on orbital-scale Asian climate dynamics: history and perspective [J]. Quaternary Sciences, 2020, 40(1): 8-17. doi: 10.11928/j.issn.1001-7410.2020.01.02

    [41]

    Wang Z X, Huang C J, Licht A et al. Middle to late Miocene eccentricity forcing on lake expansion in NE Tibet [J]. Geophysical Research Letters, 2019, 46(12): 6926-6935. doi: 10.1029/2019GL082283

    [42]

    Nie J S, Garzione C, Su Q D et al. Dominant 100, 000-year precipitation cyclicity in a late Miocene lake from northeast Tibet [J]. Science Advances, 2017, 3(3): e1600762. doi: 10.1126/sciadv.1600762

    [43]

    Wang Z X, Shen Y J, Licht A et al. Cyclostratigraphy and magnetostratigraphy of the middle Miocene Ashigong Formation, Guide Basin, China, and its implications for the paleoclimatic evolution of NE Tibet [J]. Paleoceanography and Paleoclimatology, 2018, 33(10): 1066-1085. doi: 10.1029/2018PA003409

    [44]

    Han W X, Appel E, Galy A et al. Climate transition in the Asia inland at 0.8-0.6 Ma related to astronomically forced ice sheet expansion [J]. Quaternary Science Reviews, 2020, 248: 106580. doi: 10.1016/j.quascirev.2020.106580

    [45]

    Miao Y F, Fang X M, Herrmann M et al. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1-2): 30-38. doi: 10.1016/j.palaeo.2010.10.026

    [46]

    Zhuang G S, Hourigan J K, Koch P L et al. Isotopic constraints on intensified aridity in Central Asia around 12Ma [J]. Earth and Planetary Science Letters, 2011, 312(1-2): 152-163. doi: 10.1016/j.jpgl.2011.10.005

    [47]

    Fang X M, Zhang W L, Meng Q Q et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau [J]. Earth and Planetary Science Letters, 2007, 258(1-2): 293-306. doi: 10.1016/j.jpgl.2007.03.042

    [48]

    Lu H J, Xiong S F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault [J]. Earth and Planetary Science Letters, 2009, 288(3-4): 539-550. doi: 10.1016/j.jpgl.2009.10.016

    [49]

    Chang H, Li L Y, Qiang X K et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau [J]. Earth and Planetary Science Letters, 2015, 430: 271-283. doi: 10.1016/j.jpgl.2015.08.029

    [50]

    Ji J L, Zhang K X, Clift P D et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: implications for the growth of the Northeastern Tibetan Plateau [J]. Gondwana Research, 2017, 46: 141-155. doi: 10.1016/j.gr.2017.02.015

    [51]

    Wang W T, Zheng W J, Zhang P Z et al. Expansion of the Tibetan Plateau during the Neogene [J]. Nature Communications, 2017, 8(1): 15887. doi: 10.1038/ncomms15887

    [52]

    Nie J S, Ren X P, Saylor J E et al. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau [J]. GSA Bulletin, 2020, 132(1-2): 310-320. doi: 10.1130/B35175.1

    [53]

    Chen F H, Jia J, Chen J H et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China [J]. Quaternary Science Reviews, 2016, 146: 134-146. doi: 10.1016/j.quascirev.2016.06.002

    [54] 汤良杰, 金之钧, 戴俊生, 等. 柴达木盆地及相邻造山带区域断裂系统[J]. 地球科学——中国地质大学学报, 2002, 27(6):676-682

    TANG Liangjie, JIN Zhijun, DAI Junsheng et al. Regional fault systems of Qaidam Basin and adjacent Orogenic belts [J]. Earth Science-Journal of China University of Geosciences, 2002, 27(6): 676-682.

    [55]

    Bush M A, Saylor J E, Horton B K et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: inferences from depositional patterns and multiproxy detrital provenance signatures [J]. Lithosphere, 2016, 8(1): 58-82. doi: 10.1130/L449.1

    [56] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4):1041-1048 doi: 10.3969/j.issn.0001-5733.2009.04.021

    LIU Qingsong, DENG Chenglong. Magnetic susceptibility and its environmental significances [J]. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048. doi: 10.3969/j.issn.0001-5733.2009.04.021

    [57]

    Liu Q S, Jackson M J, Banerjee S K et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12107. doi: 10.1029/2004JB003249

    [58]

    Maher B A, Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols [J]. Quaternary Research, 1995, 44(3): 383-391. doi: 10.1006/qres.1995.1083

    [59]

    Nie J S, Song Y G, King J W et al. Consistent grain size distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau [J]. Journal of Quaternary Science, 2010, 25(3): 261-266. doi: 10.1002/jqs.1304

    [60]

    Song Y, Hao Q Z, Ge J Y et al. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau [J]. Quaternary International, 2014, 334-335: 119-131. doi: 10.1016/j.quaint.2013.12.010

    [61]

    Holbourn A, Kuhnt W, Clemens S et al. Middle to late Miocene stepwise climate cooling: evidence from a high-resolution deep water isotope curve spanning 8 million years [J]. Paleoceanography, 2013, 28(4): 688-699. doi: 10.1002/2013PA002538

    [62]

    Holbourn A, Kuhnt W, Clemens S C et al. A ~12 Myr Miocene record of east Asian monsoon variability from the South China Sea [J]. Paleoceanography and Paleoclimatology, 2021, 36(7): e2021PA004267.

    [63]

    Li T, Liu F, Abels H A et al. Continued obliquity pacing of East Asian summer precipitation after the mid-Pleistocene transition [J]. Earth and Planetary Science Letters, 2017, 457: 181-190. doi: 10.1016/j.jpgl.2016.09.045

    [64]

    Mantsis D F, Lintner B R, Broccoli A J et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients [J]. Journal of Climate, 2014, 27(14): 5504-5516. doi: 10.1175/JCLI-D-13-00526.1

    [65]

    Levy R H, Meyers S R, Naish T R et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections [J]. Nature Geoscience, 2019, 12(2): 132-137. doi: 10.1038/s41561-018-0284-4

    [66]

    Ao H, Roberts A P, Dekkers M J et al. Late Miocene–Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth [J]. Earth and Planetary Science Letters, 2016, 444: 75-87. doi: 10.1016/j.jpgl.2016.03.028

    [67]

    Mantsis D F, Clement A C, Broccoli A J et al. Climate feedbacks in response to changes in obliquity [J]. Journal of Climate, 2011, 24(11): 2830-2845. doi: 10.1175/2010JCLI3986.1

    [68]

    Chen G S, Liu Z Y, Clemens S C et al. Modeling the time-dependent response of the Asian summer monsoon to obliquity forcing in a coupled GCM: a PHASEMAP sensitivity experiment [J]. Climate Dynamics, 2011, 36(3): 695-710.

    [69]

    Ren X P, Nie J S, Saylor J E et al. Provenance control on chemical weathering index of Fluvio-Lacustrine sediments: evidence from the Qaidam Basin, NE Tibetan Plateau [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(7): 3216-3224. doi: 10.1029/2019GC008330

  • 期刊类型引用(7)

    1. 吴潇平,赵广涛,徐翠玲,来志庆. 东南太平洋秘鲁海盆DEA区浅层埋藏型铁锰结核的矿物学和地球化学特征及成因类型. 中国海洋大学学报(自然科学版). 2023(02): 94-106 . 百度学术
    2. 丁雪,胡邦琦,赵京涛,王飞飞,黄威,李攀峰,刘佳,郭建卫,崔汝勇. 九州-帕劳海脊南段及邻近海域表层沉积物元素地球化学特征及其地质意义. 海洋地质与第四纪地质. 2023(01): 61-70 . 本站查看
    3. 杨叶飘,韩宗珠,来志庆,龙时迈,顾伟,窦连想. 西盘古海盆锰结核的元素地球化学特征及生长机制. 海洋地质前沿. 2023(09): 35-45 . 百度学术
    4. 丁雪,刘佳,杨慧良,赵京涛,黄威,李攀峰,宋维宇,郭建卫,虞义勇,崔汝勇,胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制. 海洋地质与第四纪地质. 2023(04): 105-115 . 本站查看
    5. 黄威,胡邦琦,宋维宇,赵京涛,路晶芳,孟祥君,江云水,崔汝勇,丁雪. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素. 海洋地质与第四纪地质. 2022(05): 137-148 . 本站查看
    6. 宋维宇,李超,孟祥君,黄威,赵京涛,陆凯,徐磊,胡邦琦,虞义勇,孙建伟,李阳,周吉祥,胡刚,原晓军. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义. 海洋地质与第四纪地质. 2022(05): 149-157 . 本站查看
    7. 季虹. 浅谈第四系“姜结石、铁锰结核”形成与分布的关系. 中国金属通报. 2021(11): 112-113 . 百度学术

    其他类型引用(1)

图(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-07-08
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-09-12
  • 刊出日期:  2022-12-27

目录

/

返回文章
返回