Elemental geochemical characteristics of surface sediments from the southern Kyushu-Palau Ridge and their geological significance
-
摘要: 菲律宾海地理位置特殊,蕴含着丰富的前沿地球科学问题,是研究地球多圈层相互作用的天然实验室。近年来,菲律宾海中部九州-帕劳海脊南段已成为研究热点,但对其表层沉积物物质来源和沉积环境了解尚存在不足。本文通过对采集于九州-帕劳海脊南段水深为3900~6100 m的69个站位样品开展沉积地球化学研究,旨在判别沉积物的物质来源和沉积环境空间变化特征。结果表明:研究区底质类型为远洋黏土和硅质软泥,不同类型沉积物的碎屑组分化学风化程度均较低,受分选和再循环的影响较小,是亚洲风尘物质和岛弧火山物质的混合产物,且以亚洲风尘物质为主;研究区不同类型站位的沉积环境基本一致,整体处于氧化沉积环境,底层水体氧化还原条件不是研究区沉积物中过渡金属(如Mo)元素富集的控制因素,铁锰(氢)氧化物是连接水体-沉积物中过渡金属元素源-汇过程的重要纽带。此外,底部氧化还原条件可能不是该海域硅藻席沉积保存的必要条件。Abstract: The Philippine Sea, with its special geographical location, is rich in frontier geoscience issues and is a natural laboratory for studying the Earth multi-layer interactions. In recent years, the southern section of the Kyushu-Palau Ridge in the central Philippine Sea has become a hot spot for geoscience research, but its surface sediment provenance and sedimentary environment are not yet well understood. The sediment geochemistry of 69 stations collected from the southern section of the Kyushu-Palau Ridge at water depths of 3900-6100m was studied to identify the spatial variability of sediment provenance and depositional environments. The results show that the sediment types in the study area are pelagic clay and siliceous ooze, and the clastic components of sediment are less chemically weathered, less affected by sorting and recycling, and are mixed products of Asian dust materials and island-arc volcanic materials, of which Asian dust materials are dominated; and the different types of sediment in the study area are basically in an oxidative depositional environment, and the bottom water redox conditions are not a controlling factor for the enrichment of transition metal (e.g., Mo) elements in the sediments, indicating that Fe-Mn (oxyhydr)oxides are an important link between the source-sink processes of transition metal elements at the water-sediment interface. In addition, bottom redox conditions may not be necessary for the preservation of diatom mats.
-
-
图 3 源区风化强度和沉积分选再循环评价图
A:A-CN-K图解[24],B:Th/Sc-Zr/Sc双变量图[29],C:La-Th-Sc三角图解[30],D:La/Th-Hf双变量图[31] 。底图均据引用文献重新绘制。
Figure 3. Evaluation of the weathering intensity in the source regions and the sedimentary sorting and recycling
A: A-CN-K ternary diagram [24], B: Th/Sc-Zr/Sc diagram [29], C: La-Th-Sc ternary diagram [30], D: La/Th-Hf diagram [31].
图 6 研究区底层水体氧化还原环境识别图
A:V/Cr-Th/U协变图,B:V/(V + Ni)-Th/U协变图,C:Ni/Co-Th/U协变图,D: EF(Mo)-Th/U协变图。其中V/Cr、Th/U和Ni/Co的含氧量临界值参考文献[49-50]。
Figure 6. Diagrams of redox environment of bottom water
A: V/Cr-Th/U; B: V/(V + Ni)-Th/U; C: Ni/Co-Th/U; D: EF(Mo)-Th/U. Critical oxygen content of V/Cr, Th/U, and Ni/Co ratios are from references[49-50].
表 1 研究区表层沉积物常量元素氧化物含量和微量元素含量
Table 1 Contents of major and trace elements of the surface sediments of this study
组分 最小值 最大值 平均值 上地壳[21] 常量
元素
/%Al2O3 2.46 17.4 13.8 15.4 CaO 0.45 2.51 1.52 3.59 MgO 0.21 4.11 3.16 2.48 K2O 0.43 2.87 2.16 2.8 Na2O 3.16 16.2 5.81 3.27 TiO2 0.04 0.84 0.64 0.64 P2O5 0.04 0.56 0.26 0.15 MnO 0.03 6.62 1.14 0.1 TFe2O3 0.87 12.4 7.99 5.04 微量
元素
/(μg/g)Cu 28.2 842 268 28 Pb 5.1 299 57.7 17 Zn 18.1 292 138 67 Cr 12.3 105 69.2 92 Ni 11.5 1160 181 47 Co 4.08 384 75.3 17.3 Cd 0.03 3.31 0.42 0.09 Li 8.35 73.6 50 21 Rb 12.8 106 72 84 Cs 0.78 9.5 6.62 4.9 Mo 0.63 70.9 18.7 1.1 Sr 48.2 709 196 320 Ba 244 2280 1106 624 V 19.1 251 164 97 Sc 2.51 25.4 19.7 14 Zr 9.9 223 121 193 Hf 0.6 4.53 3.11 5.3 U 0.39 3.13 1.84 2.7 Th 1.19 16.3 9 10.5 La 5.81 77.4 39.0 31.0 -
[1] 宋维宇, 刘娅楠, 胡邦琦, 等. 基于DEM数据的菲律宾海典型区地貌类型划分[J]. 海洋地质与第四纪地质, 2021, 41(1):192-198 SONG Weiyu, LIU Yanan, HU Bangqi, et al. Landform classification for the Philippine Sea based on DEM data [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 192-198.
[2] 张国伟, 李三忠. 西太平洋-北印度洋及其洋陆过渡带: 古今演变与论争[J]. 海洋地质与第四纪地质, 2017, 37(4):1-17 ZHANG Guowei, LI Sanzhong. West Pacific and North Indian Oceans and their ocean-continent connection zones: Evolution and debates [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 1-17.
[3] 李春峰, 周多, 李刚, 等. 西太平洋地球动力学问题与未来大洋钻探目标[J]. 地球科学, 2021, 46(3):759-769 LI Chunfeng, ZHOU Duo, LI Gang, et al. Geodynamic problems in the Western Pacific and future scientific drill targets [J]. Earth Science, 2021, 46(3): 759-769.
[4] 杜学鑫, 祝文君, 牟明杰, 等. 菲律宾海板块俯冲与岛弧演化的钻探靶区研究[J]. 海洋地质与第四纪地质, 2022, 42(5):199-210 DU Xuexin, ZHU Wenjun, MOU Mingjie, et al. Study on drilling target area of subduction of Philippine Sea plate and island arc evolution [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 199-210.
[5] 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219 WAN Shiming, XU Zhaokai. Research progress on eolian dust records in the west Pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.
[6] Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle [J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211
[7] Xu Z K, Li T G, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. doi: 10.1002/2015GC005929
[8] Jiang F Q, Zhou Y, Nan Q Y, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes [J]. Journal of Geophysical Research:Oceans, 2016, 121(9): 6911-6928. doi: 10.1002/2016JC012000
[9] Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116
[10] 明洁, 李安春, 孟庆勇, 等. 东菲律宾海帕里西维拉海盆第四纪黏土矿物组合特征及物源分析[J]. 海洋地质与第四纪地质, 2012, 32(4):139-148 MING Jie, LI Anchun, MENG Qingyong, et al. Quaternary assemblage characteristic and provenance of clay minerals in the Parecevela Basin of the East Philippine Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148.
[11] 靳宁, 李安春, 刘海志, 等. 帕里西维拉海盆西北部表层沉积物中黏土矿物的分布特征及物源分析[J]. 海洋与湖沼, 2007, 38(6):504-511 JIN Ning, LI Anchun, LIU Haizhi, et al. Clay minerals in surface sediment of the northwest Parece Vela Basin: distribution and provenance [J]. Oceanologia et Limnologia Sinica, 2007, 38(6): 504-511.
[12] 黄杰, 万世明, 张国良, 等. 海底地形特征对东菲律宾海表层黏土矿物分布的影响[J]. 海洋地质与第四纪地质, 2017, 37(1):77-85 HUANG Jie, WAN Shiming, ZHANG Guoliang, et al. Impact of seafloor topography on distribution of clay minerals in the East Philippines Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 77-85.
[13] Qin X W, Luo W D, Li P F, et al. Topographic and geomorphological features and tectogenesis of the southern section of the Kyushu-Palau Ridge (KPR) and its adjacent areas [J]. China Geology, 2021, 4(4): 571-584.
[14] Shang L N, Li P F, Du R L, et al. Structural characteristics of the KPR-CBR triple-junction inferred from gravity and magnetic interpretations, Philippine Sea Plate [J]. China Geology, 2021, 4(4): 541-552. doi: 10.31035/cg2021089
[15] 侯方辉, 秦轲, 陆凯, 等. 九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始: 多道反射地震综合研究[J]. 海洋地质与第四纪地质, 2022, 42(5):187-198 HOU Fanghui, QIN Ke, LU Kai, et al. Tectono-sedimentary characteristics and subduction initiation in the middle Kyushu-Palau Ridge and adjacent basins: A comprehensive study of multichannel seismic reflection profiles [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 187-198.
[16] 黄威, 胡邦琦, 宋维宇, 等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5):137-148 doi: 10.16562/j.cnki.0256-1492.2022052401 HUANG Wei, HU Bangqi, SONG Weiyu, et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401
[17] 黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1):199-209 HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209.
[18] 宋维宇, 李超, 孟祥君, 等. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义[J]. 海洋地质与第四纪地质, 2022, 42(5):149-157 doi: 10.16562/j.cnki.0256-1492.2022061701 SONG Weiyu, LI Chao, MENG Xiangjun, et al. Geochemical characteristics and resource significance of polymetallic nodules and cobalt-rich crusts in the southern Kyushu-Palau ridge [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 149-157. doi: 10.16562/j.cnki.0256-1492.2022061701
[19] Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8
[20] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504
[21] Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Elsevier: Oxford, 2014: 1-51.
[22] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
[23] McLennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303. doi: 10.1086/648222
[24] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3
[25] Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.
[26] Sun J M, Zhu X K. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: Implications for provenance change [J]. Earth and Planetary Science Letters, 2010, 290(3-4): 438-447. doi: 10.1016/j.jpgl.2010.01.001
[27] Chen B, Yang X P, Jiang Q D, et al. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin Sandy Land, northern China: Implications for weathering, recycling, and provenance [J]. CATENA, 2022, 208: 105769. doi: 10.1016/j.catena.2021.105769
[28] Zhang Q, Liu Q S, Roberts A P, et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asian interior? [J]. Geology, 2020, 48(1): 77-81. doi: 10.1130/G46862.1
[29] McLennan S M, Hemming S R, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics [J]. Special Papers-Geological Society of America, 1993, 284: 21-40.
[30] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292
[31] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones [J]. Journal of the Geological Society, 1987, 144(4): 531-542. doi: 10.1144/gsjgs.144.4.0531
[32] Shao L, Li X H, Wei G J, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea [J]. Science in China Series D:Earth Sciences, 2001, 44(10): 919-925. doi: 10.1007/BF02907084
[33] Wei G J, Liu Y, Ma J L, et al. Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing [J]. Marine Geology, 2012, 319-322: 21-34. doi: 10.1016/j.margeo.2012.05.007
[34] Olivarez A M, Owen R M, Rea D K. Geochemistry of eolian dust in Pacific pelagic sediments: Implications for paleoclimatic interpretations [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2147-2158. doi: 10.1016/0016-7037(91)90093-K
[35] 丁雪, 胡邦琦, 徐方建, 等. 晚上新世以来菲律宾海盆XT4孔黏土矿物特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(1):42-51 doi: 10.16562/j.cnki.0256-1492.2020111301 DING Xue, HU Bangqi, XU Fangjian, et al. Evolution of clay minerals assemblages since Late Pliocene and its paleoenvironmental implications: Evidence from Core XT4 of the Philippine Sea Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 42-51. doi: 10.16562/j.cnki.0256-1492.2020111301
[36] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008, 53(6):923-931 doi: 10.3321/j.issn:0023-074X.2008.06.013 XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Geochemical character and material source of sediments in the eastern Philippine Sea [J]. Chinese Science Bulletin, 2008, 53(6): 923-931. doi: 10.3321/j.issn:0023-074X.2008.06.013
[37] 褚征, 胡宁静, 刘季花, 等. 西菲律宾海表层沉积物稀土元素地球化学特征及物源指示意义[J]. 海洋地质与第四纪地质, 2016, 36(5):53-62 doi: 10.16562/j.cnki.0256-1492.2016.05.006 CHU Zheng, HU Ningjing, LIU Jihua, et al. Rare earth elements in sediments of west Philippine Sea and their implications for sediment provenance [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 53-62. doi: 10.16562/j.cnki.0256-1492.2016.05.006
[38] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(19): 11492-11504. doi: 10.1002/2014JD022025
[39] Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid- Pleistocene inferred from radiogenic Sr and Nd isotopes [J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011
[40] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
[41] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography [J]. Chemical Geology, 2012, 324-325: 46-58. doi: 10.1016/j.chemgeo.2011.09.009
[42] Bennett W W, Canfield D E. Redox-sensitive trace metals as paleoredox proxies: A review and analysis of data from modern sediments [J]. Earth-Science Reviews, 2020, 204: 103175. doi: 10.1016/j.earscirev.2020.103175
[43] Algeo T J, Li C. Redox classification and calibration of redox thresholds in sedimentary systems [J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26. doi: 10.1016/j.gca.2020.01.055
[44] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001
[45] Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032. doi: 10.1016/j.gca.2005.05.015
[46] Krishnaswami S. Authigenic transition elements in Pacific pelagic clays [J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 425-434. doi: 10.1016/0016-7037(76)90007-7
[47] Piper D Z. The metal oxide fraction of pelagic sediment in the equatorial North Pacific Ocean: A source of metals in ferromanganese nodules [J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2127-2145. doi: 10.1016/0016-7037(88)90193-7
[48] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. [J]. Chemical Geology, 1992, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y
[49] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X
[50] Wignall P B, Twitchett R J. Oceanic anoxia and the end permian mass extinction [J]. Science, 1996, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155
[51] Rimmer S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA) [J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029
[52] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
[53] Luo M, Algeo T J, Tong H P, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 70-82. doi: 10.1016/j.dsr2.2017.01.006